首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设α1,α2,α3,α4都是n维向量.判断下列命题是否成立. ①如果α1,α2,α3线性无关,α4不能用α1,α2,α3线性表示,则α1,α2,α3,α4线性无关. ②如果α1,α2线性无关,α3,α4都不能用α1,α2线性表示,则α1,α
设α1,α2,α3,α4都是n维向量.判断下列命题是否成立. ①如果α1,α2,α3线性无关,α4不能用α1,α2,α3线性表示,则α1,α2,α3,α4线性无关. ②如果α1,α2线性无关,α3,α4都不能用α1,α2线性表示,则α1,α
admin
2019-08-12
87
问题
设α
1
,α
2
,α
3
,α
4
都是n维向量.判断下列命题是否成立.
①如果α
1
,α
2
,α
3
线性无关,α
4
不能用α
1
,α
2
,α
3
线性表示,则α
1
,α
2
,α
3
,α
4
线性无关.
②如果α
1
,α
2
线性无关,α
3
,α
4
都不能用α
1
,α
2
线性表示,则α
1
,α
2
,α
3
,α
4
线性无关.
③如果存在n阶矩阵A,使得Aα
1
,Aα
2
,Aα
3
,Aα
4
线性无关,则α
1
,α
2
,α
3
,α
4
线性无关.
④如果α
1
=Aβ
1
,α
2
=Aβ
2
,α
3
=Aβ
3
,α
4
=Aβ
4
,其中A可逆,β
1
,β
2
,β
3
,β
4
线性无关,则α
1
,α
2
,α
3
,α
4
线性无关.
其中成立的为
选项
A、①③④.
B、①②③.
C、②③④.
D、①②④.
答案
A
解析
①,③,④.
①直接从定理3.2得到.
②明显不对,例如α
3
不能用α
1
,α
2
线性表示,而α
3
=α
4
时,α
3
,α
4
都不能用α
1
,α
2
线性表示但是α
1
,α
2
,α
3
,α
4
线性相关.
③容易用秩说明:Aα
1
,Aα
2
,Aα
3
,Aα
4
的秩即矩阵(Aα
1
,Aα
2
,Aα
3
,Aα
4
)的秩,而(Aα
1
,Aα
2
,Aα
3
,Aα
4
)=A(α
1
,α
2
,α
3
,α
4
),由矩阵秩的性质④,
r(Aα
1
,Aα
2
,Aα
3
,Aα
4
)≤r(α
1
,α
2
,α
3
,α
4
).Aα
1
,Aα
2
,Aα
3
,Aα
4
无关,秩为4,于是α
1
,α
2
,α
3
,α
4
的秩也一定为4,线性无关.
④也可从秩看出:A可逆时,r(α
1
,α
2
,α
3
,α
4
)=r(Aα
1
,Aα
2
,Aα
3
,Aα
4
)=4.
转载请注明原文地址:https://kaotiyun.com/show/FpN4777K
0
考研数学二
相关试题推荐
计算
设A=αβT,B=βTα,其中βT是β的转置.求满足2B2A2C=A4C+B4C+γ的所有矩阵C.
求二重积分其中D是由曲线直线y=2,y=x所围成的平面区域.
设B是3阶非零矩阵,且AB=O,则Ax=0的通解是______________.
设y1=xex+2e2x,y2=xex+3e-x,y3=xex—e2x一e-x为某二阶常系数线性非齐次方程的3个特解,设该方程的y"前的系数为1,则该方程为_________.
已知α1,α2,α3,α4为3维非零列向量,则下列结论中:①如果α4不能由α1,α2,α3线性表出,则α1,α2,α3线性相关;②如果α1,α2,α3线性相关,α2,α3,α4线性相关,则α1,α2,α4也线性相关;③如果r(
若f(x)在点x0处可导,则|f(x)|在点x0处()
设则α,β的值分别为____________.
设讨论它们在点(0,0)处的①偏导数的存在性;②函数的连续性;③函数的可微性.
若f"(x)不变号,且曲线y=f(x)在点(1,1)处的曲率圆为x2+y2=2,则函数f(x)在区间(1,2)内()
随机试题
试验误差是指观测值与平均值之差。
提出“积者五脏所生,聚者六腑所成”的医著是
X线机“容量保护”调整的依据是
A.益火补土法B.金水相生法C.抑木扶土法D.培土制水法E.泻火补水法肾阴不足,不能上滋肺阴,以致肺阴不足,其治疗宜采用
患者,女性,16岁。心慌,多汗,手颤2个月。无明显突眼,甲状腺弥漫性肿大。血游离T3、T4增高,TSH降低。肝、肾功能正常,血WBC6.8×109/L。诊为甲亢。既往无甲亢病史。治疗选择
采用填埋法处理垃圾时,一般采用的防渗技术有()。
下面对导游人员的分类,描述正确的是()。
A.Well,aboutcostumesB.ButyouknowmewithfashionC.Ikindoffeelthatit’smoreaboutmusicitselfD.Soyouhavetoch
Bob:It’sabeautifuldaytoday!Howaboutalittle’tripoutintothecountry?Mark:______
•Lookatthenotesbelow.•Someinformationismissing.•Youwillhearaninterviewonthetelephone.•Foreachquestion
最新回复
(
0
)