首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设α1,α2,α3,α4都是n维向量.判断下列命题是否成立. ①如果α1,α2,α3线性无关,α4不能用α1,α2,α3线性表示,则α1,α2,α3,α4线性无关. ②如果α1,α2线性无关,α3,α4都不能用α1,α2线性表示,则α1,α
设α1,α2,α3,α4都是n维向量.判断下列命题是否成立. ①如果α1,α2,α3线性无关,α4不能用α1,α2,α3线性表示,则α1,α2,α3,α4线性无关. ②如果α1,α2线性无关,α3,α4都不能用α1,α2线性表示,则α1,α
admin
2019-08-12
51
问题
设α
1
,α
2
,α
3
,α
4
都是n维向量.判断下列命题是否成立.
①如果α
1
,α
2
,α
3
线性无关,α
4
不能用α
1
,α
2
,α
3
线性表示,则α
1
,α
2
,α
3
,α
4
线性无关.
②如果α
1
,α
2
线性无关,α
3
,α
4
都不能用α
1
,α
2
线性表示,则α
1
,α
2
,α
3
,α
4
线性无关.
③如果存在n阶矩阵A,使得Aα
1
,Aα
2
,Aα
3
,Aα
4
线性无关,则α
1
,α
2
,α
3
,α
4
线性无关.
④如果α
1
=Aβ
1
,α
2
=Aβ
2
,α
3
=Aβ
3
,α
4
=Aβ
4
,其中A可逆,β
1
,β
2
,β
3
,β
4
线性无关,则α
1
,α
2
,α
3
,α
4
线性无关.
其中成立的为
选项
A、①③④.
B、①②③.
C、②③④.
D、①②④.
答案
A
解析
①,③,④.
①直接从定理3.2得到.
②明显不对,例如α
3
不能用α
1
,α
2
线性表示,而α
3
=α
4
时,α
3
,α
4
都不能用α
1
,α
2
线性表示但是α
1
,α
2
,α
3
,α
4
线性相关.
③容易用秩说明:Aα
1
,Aα
2
,Aα
3
,Aα
4
的秩即矩阵(Aα
1
,Aα
2
,Aα
3
,Aα
4
)的秩,而(Aα
1
,Aα
2
,Aα
3
,Aα
4
)=A(α
1
,α
2
,α
3
,α
4
),由矩阵秩的性质④,
r(Aα
1
,Aα
2
,Aα
3
,Aα
4
)≤r(α
1
,α
2
,α
3
,α
4
).Aα
1
,Aα
2
,Aα
3
,Aα
4
无关,秩为4,于是α
1
,α
2
,α
3
,α
4
的秩也一定为4,线性无关.
④也可从秩看出:A可逆时,r(α
1
,α
2
,α
3
,α
4
)=r(Aα
1
,Aα
2
,Aα
3
,Aα
4
)=4.
转载请注明原文地址:https://kaotiyun.com/show/FpN4777K
0
考研数学二
相关试题推荐
设y=y(x)是由方程y2+xy+x2一x=0确定,且满足y(1)=一1的连续函数,求
设函数f(x)在[a,b]上连续,x1,x2,…,xn,…是[a,b]上的一个点列,求
求函数的间断点,并判断它们的类型.
证明:当0<a<b<π时,bsinb+2cosb+nb>asina+2cosa+πa.
设A是3阶矩阵,满足Aα1=一α1,Aα2=α1+2α2,Aα3=α1+3α2+α3,其中α1=[0,1,1]T,α2=[1,0,1]T,α3=[1,1,0]T.证明A相似于对角矩阵A,求A,并求可逆矩阵P,使得P-1AP=A.
设A与B均为正交矩阵,并且|A|+|B|=0,证明:A+B不可逆.
微分方程y"一2y’+y=ex的特解形式为(其中A,B,C,D为常数)()
设函数f(x)在=2的某邻域内可导,且f’(x)=ef(x),f(2)=1,求f(n)(2).
设f(x)在(-∞,+∞)内二次可导,令F(x)=求常数A,B,C的值使函数F(x)在(-∞,+∞)内二次可导.
已知则当时,=______。[img][/img]
随机试题
这个标志是何含义?
行政组织平行分部化的基本方式是()
Duringthelastvacation,IvisitedmanyareasoftheUnitedStates______Ihadneverseenbefore.
药品检验工作的基本程序为
能够诊断“无脑儿”需要在
一列火车驶过车站时,站台边上观察者测得火车鸣笛声频率的变化情况(与火车固有的鸣笛声频率相比)为()。
儿童的痛觉是随着年龄增长而发展的,表现为痛觉感受性越来越低。()
2005年全国1%人口抽样调查数据显示,至2005年11月1日零时全国31个省、自治区、直辖市和现役军人的总人口为130628万人,比2000年11月1日零时第五次全国人口普查的总人口增加了4045万人,增长3.2%;年平均增加809万人,年平均增长0.6
0.50
WanttoBe100?ListentoThese5Centenarians(百岁老人)FiveneighborsatacentralMissouriretirementcommunitywhoareall
最新回复
(
0
)