首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设三阶实对称矩阵A的各行元素之和均为3,向量α1=(—1,2,—1)T,α2=(0,—1,1)T是线性方程组Ax=0的两个解。 (Ⅰ)求A的特征值与特征向量; (Ⅱ)求正交矩阵Q和对角矩阵A,使得QTAQ=A。
设三阶实对称矩阵A的各行元素之和均为3,向量α1=(—1,2,—1)T,α2=(0,—1,1)T是线性方程组Ax=0的两个解。 (Ⅰ)求A的特征值与特征向量; (Ⅱ)求正交矩阵Q和对角矩阵A,使得QTAQ=A。
admin
2020-03-10
29
问题
设三阶实对称矩阵A的各行元素之和均为3,向量α
1
=(—1,2,—1)
T
,α
2
=(0,—1,1)
T
是线性方程组Ax=0的两个解。
(Ⅰ)求A的特征值与特征向量;
(Ⅱ)求正交矩阵Q和对角矩阵A,使得Q
T
AQ=A。
选项
答案
(Ⅰ)因为矩阵A的各行元素之和均为3,所以有 [*] 则λ=3是矩阵A的特征值,α=(1,1,1)
T
是对应的特征向量。对应λ=3的全部特征向量为kα=k(1,1,1)
T
,其中k是不为零的常数。 又由题设知Aα
1
=0,Aα
2
=0,即Aα
1
=0.α
1
,Aα
2
=0.α
2
,而且α
1
,α
2
线性无关,所以λ=0是矩阵A的二重特征值,α
1
,α
2
是其对应的特征向量,因此对应λ=0的全部特征向量为 k
1
α
1
+k
2
α
2
=k
1
(—1,2,—1)
T
+k
2
(0,—1,1)
T
,其中k
1
,k
2
是不全为零的常数。 (Ⅱ)因为A是实对称矩阵,所以α与α
1
,α
2
正交,只需将α
1
与α
2
正交化。 由施密特正交化法,取 β
1
=α
1
,β
2
=α
2
—[*] 再将α,β
1
,β
2
单位化,得 [*] 令Q=(η
1
,η
2
,η
3
),则Q
—1
=Q
T
,且 [*]
解析
转载请注明原文地址:https://kaotiyun.com/show/FrD4777K
0
考研数学三
相关试题推荐
设三阶行列式D3的第二行元素分别为1,一2,3,对应的代数余子式分别为一3,2,1,则D3=___________。
f(x)=g(x)为奇函数且在x=0处可导,则f'(0)=__________。
设f(x)为连续函数,F(t)=∫tldy∫tyf(x)dx则F'(2)等于()
设线性方程组(1)Ax=0的一个基础解系为α1=(1,1,1,0,2)T,α2=(1,1,0,1,1)T,α3=(1,0,1,1,2)T。线性方程组(2)Bx=0的一个基础解系为β1=(1,1,一1,一1,1)T,β2=(1,一1,1,一1,2)T,β3
设四元齐次线性方程组(1)为而已知另一四元齐次线性方程组(2)的一个基础解系为α1=(2,一1,a+2,1)T,α2=(一1,2,4,a+8)T。求方程组(1)的一个基础解系;
A为三阶实对称矩阵,A的秩为2,且求矩阵A。
设二维随机变量(X,Y)在区域G={(x,y)|l≤x+y≤2,0≤y≤1}上服从均匀分布。试求:(X,Y)的边缘概率密度fx(x)和fy(y);
设f(x)在(一1,1)内具有二阶连续导数且f"(x)≠0。证明:
设F(x)=|(x2-t2)f’(t)dt,其中f’(x)在x=0处连续,且当x→0时,F’(x)-x2,则f’(x)=_____________.
从点P1(1,0)作x轴的垂线,交抛物线y=x2于点Q1(1,1),再从Q1作这条抛物线的切线与x轴交于P2,然后又从P2作x轴的垂线,交抛物线于点Q2…,依次重复上述过程得到一系列的点P1,Q1,P2,Q2,…,Pn,Qn,….
随机试题
求广义积分∫1+∞
重金属中毒最好选用()解毒
根据《公开地图内容表述若干规定》,下列设施和内容中,不得在公开地图产品上表示的是()。
中江贸易。(香港)有限公司系中江国际贸易(公司)派驻香港的全资子公司,受总公司的委托为天津中江服装饰品厂对外签约订货。本提单之运输工具于2001年1月16日向天津海关申报进口。“贸易方式”栏应填()。
证券发行市场的作用不包括()。
他在看小说时睡着了。Hefellasleep______readinganovel.
近期股票市场连续大涨,似乎意味着一个新的全民炒股的时代又来了。一般说来,当通货膨胀温和上升时,股市呈现上升趋势;而当通货膨胀率突破一定的临界点之后,则会引发货币政策的紧缩,从而带来股市的下行;直到通货膨胀回落到较低水平乃至发生通货紧缩时,货币政策往往会再度
甲、乙、丙、丁等10位同学排成一排,则甲、乙正好排在两头的概率为多少?
Whatdoesitmeantobeintelligent?Mostpsychologistsagreethatabstractreasoning,problemsolving,andtheabilitytoacqui
Sincewearesocialbeings,thequalityofourlivesdependsinlargemeasureonourinterpersonalrelationships.Onestrengtho
最新回复
(
0
)