首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知n阶矩阵A满足A3=2E,B=A2-2A+2E,求(B一E)-1.
已知n阶矩阵A满足A3=2E,B=A2-2A+2E,求(B一E)-1.
admin
2019-04-22
80
问题
已知n阶矩阵A满足A
3
=2E,B=A
2
-2A+2E,求(B一E)
-1
.
选项
答案
由B=A
2
一2A+2E可得B—E=(A—E)
2
. 再由A
3
=2E,可得(A一E)(A
2
+A+E)=E,有(A—E)
-1
=A
2
+A+E. 于是(B一E)
-1
=[(A—E)
2
]
-1
=(A
2
+A+E)
2
.
解析
本题考查矩阵的基本运算和矩阵求逆.
转载请注明原文地址:https://kaotiyun.com/show/FxV4777K
0
考研数学二
相关试题推荐
设f(x)在[a,b上连续,且f(x)>0,证明:存在ξ∈(a,b),使得∫aξf(x)dx=∫ξbf(x)dx.
设α1,α2,…,αn(n≥2)线性无关,证明:当且仅当n为奇数时α1+α2,α2+α3,…,αn+α1线性无关.
设奇函数f(x)在[一1,1]上具有二阶导数,且f(1)=1,证明:存在η∈(一1,1),使得f’’(η)+f’(η)=1。
求微分方程y"+4y’+4y=e-2x的通解.
确定常数a,使向量组α1=(1,1,a)T,α2=(1,a,1)T,α3=(a,1,1)T可由向量组β1=(1,1,a)T,β2=(一2,a,4)T,β3=(一2,a,a)T线性表示,但向量组β1,β2,β3不能由向量组α1,α2,α3线性表示。
设(Ⅰ)和(Ⅱ)都是4元齐次线性方程组,已知ξ1=(1,0,1,1)T,ξ2=(-1,0,1,0)T,ξ3=(0,1,1,0)T是(Ⅰ)的一个基础解系,η1=(0,1,0,1)T,η2=(1,1,-1,0)T是(Ⅱ)的一个基础解系.求(Ⅰ)和(Ⅱ)公共解.
设f(x)在[0,]上具有连续的二阶导数,且f’(0)=0.证明:存在ξ,η,ω∈(0,),使得f’(ξ)=ηsin2ξf"(ω).
若函数φ(x)及ψ(x)是n阶可微的,且φ(k)(x0)=ψ(k)(x0),k=0,1,2,…,n一1.又x>x0时,φ(n)(z)>ψ(n)(x).试证:当x>x0时,φ(x)>ψ(x).
设f(χ)在[0.1]二阶可导,且f(0)=f(1)=0,试证:ξ∈(0,1)使得f〞(ξ)=f′(ξ).
随机试题
哲学上的两大基本派别是指()
在国家标准《中医临床诊疗术语》中消化性溃疡的命名为
木香主治
根据《综合交通网中长期发展规划》,综合交通枢纽的划分不包括()。
当市场平均收益率为11%,企业的收益率为12%,国库券利率为5%,企业债券利率为8%,被评估企业所在行业的风险系数为0.8,被评估企业的风险报酬率最接近于()。
弗里德曼的货币需求函数强调()对货币需求起主要作用。
下列担保物权中,属于转移占有的担保物权有()。
设收敛,则下列正确的是().
下列关于信息和数据的叙述不正确的是()。
Oneofthemostdifficultaspectsofdecidingwhethercurrentclimaticeventsrevealevidenceoftheimpactofhumanactivities
最新回复
(
0
)