首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A为n阶实对称矩阵,f(A)=n,Aij是A=(aij)n×m中元素aij(i,j=1,2,…,n)的代数余子式,二次型f(x1,x2,…,xn)= (Ⅰ)记X=(x1,x2,…,xn)T,把f(x1,x2,…,xn)写成矩阵形式,并证明二次型f(x
设A为n阶实对称矩阵,f(A)=n,Aij是A=(aij)n×m中元素aij(i,j=1,2,…,n)的代数余子式,二次型f(x1,x2,…,xn)= (Ⅰ)记X=(x1,x2,…,xn)T,把f(x1,x2,…,xn)写成矩阵形式,并证明二次型f(x
admin
2014-05-19
44
问题
设A为n阶实对称矩阵,f(A)=n,A
ij
是A=(a
ij
)
n×m
中元素a
ij
(i,j=1,2,…,n)的代数余子式,二次型f(x
1
,x
2
,…,x
n
)=
(Ⅰ)记X=(x
1
,x
2
,…,x
n
)
T
,把f(x
1
,x
2
,…,x
n
)写成矩阵形式,并证明二次型f(x)的矩阵为A
-1
;
(Ⅱ)二次型g(X)=X
T
AX与f(X)的规范形是否相同?说明理由.
选项
答案
(Ⅰ)由题设,[*] 已知A为n阶实对称矩阵,从而上式两边可转置,即 [*] 已知r(A)=n,从而|A|≠0,A可逆,且A
-1
=[*],则由(1)式知 f(x
1
,x
2
,…,x
n
)=x
T
A
-1
X且(A
-1
)
T
=(A
T
)
-1
=A
-1
, 故f(x
1
,x
2
,…,x
n
)=x
T
A
-1
X是f(X)的矩阵表示,且相应矩阵为A
-1
,证毕. (Ⅱ)由于(A
-1
)
T
AA
-1
=(A
T
)
-1
E=A
-1
,则A
-1
与A合同,于是g(X)=X
T
AX与f(X)有相同规范形,得证.
解析
转载请注明原文地址:https://kaotiyun.com/show/GJ34777K
0
考研数学二
相关试题推荐
(2007年)设函数f(x),g(x)在[a,b]上连续,在(a,b)内二阶可导且存在相等的最大值,又f(a)=g(a),b(b)=g(b),证明:(I)存在η∈(a,b),使得f(η)=g(η);(Ⅱ)存在ξ∈(a,b),使得f"(ξ)=g"(ξ)。
(03年)已知齐次线性方程组其中≠0.试讨论a1,a2,…,an和b满足何种关系时,(1)方程组仅有零解;(2)方程组有非零解.在有非零解时,求此方程组的一个基础解系.
(89年)设α1=(1,1,1),α2=(1,2,3),α3=(1,3,t)(1)问当t为何值时,向量组α1,α2,α3线性无关?(2)问当t为何值时,向量组α1,α2,α3线性相关?(3)当向量组α1,α2,α3线性相关时,
(97年)设函数f(χ)在[0,+∞)上连续.单调不减且f(0)≥0.试证函数在[0,+∞)上连续且单调不减(其中n>0)
[2018年]设平面区域D由曲线与直线及y轴围成,计算二重积分
设随机变量X的分布律为P{X=k}=p(1-P)k-1(k=1,2,…),Y在1~k之间等可能取值,求P{Y=3}。
设f(x)二阶可导,f(x)/x=1,且f(1)=1,证明:存在ξ∈(0,1),使得f"(ξ)一2f’(ξ)=-2。
设,问a,b,c为何值时,矩阵方程AX=B有解,有解时求出全部解。
设A,B及A*都是n(n≥3)阶非零矩阵,且ATB=O,则rB等于()。
设A为三阶矩阵,其特征值为λ1=λ2=-1,λ3=2,对应的线性无关的特征向量为α1,α2,α3,又P=(α1+α3,α2-α3,α3),则P-1AP=()。
随机试题
旅游产品营销渠道的冲突类型主要有()
患者,女,36岁。主诉停经56天,阴道不规则出血4天,左下腹痛1天。妇科检查:后穹窿穿刺抽出不凝血4ml,尿妊娠试验(+)。该患者最可能的病因是
由水谷精微之气中的慓疾滑利部分所化生的气是
关于偿债备付率,下列说法正确的是()。
资产评估报告书的基本要素中,不包括()。
俗话说,“师傅领进门,修行靠个人”。这句话体现的哲理是()。
下列提高自我效能感的方法不正确的是()。
婴儿难以适应环境,生活无规律,负性情绪多,对新异刺激反应消极,按照托马斯一切斯的婴儿气质类型理论,其气质类型属于()
一种新型飞机发动机的广告称:实验表明,其安全性明显高于旧型发动机,只是燃料消耗略高。去年,两种发动机同时销售,结果旧型发动机的销量明显高于新型发动机。这说明,飞机发动机的购买者并不把安全性作为首要考虑的因素。依据以下哪项原则,最有助于反驳上述论证
Readthearticlebelowaboutminingmergersandthequestionsontheoppositepage.Foreachquestion(13-18),markonelette
最新回复
(
0
)