首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A为n阶实对称矩阵,f(A)=n,Aij是A=(aij)n×m中元素aij(i,j=1,2,…,n)的代数余子式,二次型f(x1,x2,…,xn)= (Ⅰ)记X=(x1,x2,…,xn)T,把f(x1,x2,…,xn)写成矩阵形式,并证明二次型f(x
设A为n阶实对称矩阵,f(A)=n,Aij是A=(aij)n×m中元素aij(i,j=1,2,…,n)的代数余子式,二次型f(x1,x2,…,xn)= (Ⅰ)记X=(x1,x2,…,xn)T,把f(x1,x2,…,xn)写成矩阵形式,并证明二次型f(x
admin
2014-05-19
108
问题
设A为n阶实对称矩阵,f(A)=n,A
ij
是A=(a
ij
)
n×m
中元素a
ij
(i,j=1,2,…,n)的代数余子式,二次型f(x
1
,x
2
,…,x
n
)=
(Ⅰ)记X=(x
1
,x
2
,…,x
n
)
T
,把f(x
1
,x
2
,…,x
n
)写成矩阵形式,并证明二次型f(x)的矩阵为A
-1
;
(Ⅱ)二次型g(X)=X
T
AX与f(X)的规范形是否相同?说明理由.
选项
答案
(Ⅰ)由题设,[*] 已知A为n阶实对称矩阵,从而上式两边可转置,即 [*] 已知r(A)=n,从而|A|≠0,A可逆,且A
-1
=[*],则由(1)式知 f(x
1
,x
2
,…,x
n
)=x
T
A
-1
X且(A
-1
)
T
=(A
T
)
-1
=A
-1
, 故f(x
1
,x
2
,…,x
n
)=x
T
A
-1
X是f(X)的矩阵表示,且相应矩阵为A
-1
,证毕. (Ⅱ)由于(A
-1
)
T
AA
-1
=(A
T
)
-1
E=A
-1
,则A
-1
与A合同,于是g(X)=X
T
AX与f(X)有相同规范形,得证.
解析
转载请注明原文地址:https://kaotiyun.com/show/GJ34777K
0
考研数学二
相关试题推荐
(91年)试证明n维列向量组α1,α2,…,αn线性无关的充分必要条件是行列式其中αiT表示列向量αi的转置,i=1,2,…,n.
(92年)设测量误差X~N(0,102).试求在100次独立重复测量中,至少有三次测量误差的绝对值大于19.6的概率α,并用泊松分布求出α的近似值(要求小数点后取两位有效数字).
设二次型f(x1,x2,x3)=x12+x22+x32+2ax1x2+2x1x3+2bx2x3的秩为1,且(0,1,-1)T为二次型的矩阵A的特征向量.(Ⅰ)求常数a,b;(Ⅱ)求正交变换X=QY,使二次型XTAX化为标准形。
设A=,B为三阶非零矩阵,为BX=0的解向量,且AX=α3有解,(Ⅰ)求常数a,b;(Ⅱ)求BX=0的通解。
求微分方程y"+y’-2y=xex+sin2x的通解。
设三个矩阵A的特征值为-1,-1,3,其对应的线性无关的特征向量为α1,α2,α3,令P=(2α1+α2,α1-α2,2α3),则P-1A*P=()。
设二次型f(x1,x2,x3)=XTAX经过正交变换化为标准形f=2y12-y22-y32,又A*α=α,其中α=(1,1,-1)T。(Ⅰ)求矩阵A;(Ⅱ)求正交矩阵Q,使得经过正交变换X=QY,二次型f(x1,x2,x3)=XTAX化
设A,B及A*都是n(n≥3)阶非零矩阵,且ATB=O,则rB等于()。
已知四维列向量α1,α2,α3线性无关,若向量β1(i=1,2,3,4)是非零向量且与向量α1,α2,α3均正交,则向量组β1,β2,β3,β4的秩为()。
随机试题
有以下程序#include<stdio.h>#include<string.h>#include<stdlib.h>main(){char*p1,*p2;
白色血栓主要由下列哪些成分构成
十枣汤的组成药物是
三型卡环(适用于三型观测线)的特点是
下列各项中,判断心脏骤停的最佳指标是
经营者承担民事责任的情况是
当建筑物内的生活用水既有室外管网直接供水,又有自行加压供水时,其给水引入管的设计流量应取________。
某企业在收取货款时另向购买方收取延期付款利息17000元,则企业账务处理正确的是()。
在加工水果罐头时,水溶性和热敏性维生素的损失一般可达()。
ThefactthatmostAmericansliveinurbanareasdoesnotmeanthattheyresideinthecenteroflargecities.Infact,moreAme
最新回复
(
0
)