首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A为n阶实对称矩阵,f(A)=n,Aij是A=(aij)n×m中元素aij(i,j=1,2,…,n)的代数余子式,二次型f(x1,x2,…,xn)= (Ⅰ)记X=(x1,x2,…,xn)T,把f(x1,x2,…,xn)写成矩阵形式,并证明二次型f(x
设A为n阶实对称矩阵,f(A)=n,Aij是A=(aij)n×m中元素aij(i,j=1,2,…,n)的代数余子式,二次型f(x1,x2,…,xn)= (Ⅰ)记X=(x1,x2,…,xn)T,把f(x1,x2,…,xn)写成矩阵形式,并证明二次型f(x
admin
2014-05-19
73
问题
设A为n阶实对称矩阵,f(A)=n,A
ij
是A=(a
ij
)
n×m
中元素a
ij
(i,j=1,2,…,n)的代数余子式,二次型f(x
1
,x
2
,…,x
n
)=
(Ⅰ)记X=(x
1
,x
2
,…,x
n
)
T
,把f(x
1
,x
2
,…,x
n
)写成矩阵形式,并证明二次型f(x)的矩阵为A
-1
;
(Ⅱ)二次型g(X)=X
T
AX与f(X)的规范形是否相同?说明理由.
选项
答案
(Ⅰ)由题设,[*] 已知A为n阶实对称矩阵,从而上式两边可转置,即 [*] 已知r(A)=n,从而|A|≠0,A可逆,且A
-1
=[*],则由(1)式知 f(x
1
,x
2
,…,x
n
)=x
T
A
-1
X且(A
-1
)
T
=(A
T
)
-1
=A
-1
, 故f(x
1
,x
2
,…,x
n
)=x
T
A
-1
X是f(X)的矩阵表示,且相应矩阵为A
-1
,证毕. (Ⅱ)由于(A
-1
)
T
AA
-1
=(A
T
)
-1
E=A
-1
,则A
-1
与A合同,于是g(X)=X
T
AX与f(X)有相同规范形,得证.
解析
转载请注明原文地址:https://kaotiyun.com/show/GJ34777K
0
考研数学二
相关试题推荐
(2003年)求幂级数(|x|<1)的和函数f(x)及其极值。
(92年)设测量误差X~N(0,102).试求在100次独立重复测量中,至少有三次测量误差的绝对值大于19.6的概率α,并用泊松分布求出α的近似值(要求小数点后取两位有效数字).
(97年)设函数f(χ)在[0,+∞)上连续.单调不减且f(0)≥0.试证函数在[0,+∞)上连续且单调不减(其中n>0)
[*]
设二次型f(x1,x2,x3)=x12+x22+x32+2ax1x2+2x1x3+2bx2x3的秩为1,且(0,1,-1)T为二次型的矩阵A的特征向量.(Ⅰ)求常数a,b;(Ⅱ)求正交变换X=QY,使二次型XTAX化为标准形。
设A=,B为三阶非零矩阵,为BX=0的解向量,且AX=α3有解,(Ⅰ)求常数a,b;(Ⅱ)求BX=0的通解。
设A为三阶实对称矩阵,为方程组(2E-A)X=0的一个解,又A2-A-2E=0且|A|=2,则A=________。
设z=z(x,y)是由3x2-2xy+y2-yz-z2+22=0确定的二元函数,求其极值。
随机试题
慢性房颤最常见的并发症为
A、不致出现过敏现象B、柔软、滑润,无板硬、黏着不适感C、不会刺激皮肤引起皮炎D、能使疮口早日愈合E、富有黏性,能固定患部,使患部减少活动使用油膏的主要优点有
企业进行会计数字比较的方式包括()。
以下关于生活常识,说法不正确的是()。
旅游行业核心价值观中的“游客为本”与“服务至诚”之间是()的关系。
社会工作者小陈负责“关爱社区失独老人”服务项目,为了完成项目的各项工作,他招募了一批护理、法律等方面的志愿者参与到项目中,下列为这些志愿者准备的培训内容,符合要求的是()
国务院全体会议由国务院总理、副总理、各部部长、各委员会主任、审计长、秘书长和()组成。
近年来,伯来鸟的数量急剧减少,这种肉食鸟一般栖息于平原,如农场或牧场。一些鸟类学家认为这是由于一种新型杀虫剂导致伯来鸟赖以为食的昆虫急剧减少的结果。以下哪项中提出来的问题最不能帮助我们重新判断上述推理是否有效?
Thefollowingisamenuofamobile(移动的)phone.Afterreadingit,youarerequiredtofindtheitemsequivalentto(与......等同)th
Thetendencynowadaystowanderinwildernessesisdelightfultosee.Thousandsoftired,nerve-shaking,over-civilizedpeoplea
最新回复
(
0
)