首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设二次型f(x1,x2,x3)=x12+x22+x32+2ax1x2+2x1x3+2bx2x3的秩为1,且(0,1,-1)T为二次型的矩阵A的特征向量. (Ⅰ)求常数a,b; (Ⅱ)求正交变换X=QY,使二次型XTAX化为标准形。
设二次型f(x1,x2,x3)=x12+x22+x32+2ax1x2+2x1x3+2bx2x3的秩为1,且(0,1,-1)T为二次型的矩阵A的特征向量. (Ⅰ)求常数a,b; (Ⅱ)求正交变换X=QY,使二次型XTAX化为标准形。
admin
2021-01-28
50
问题
设二次型f(x
1
,x
2
,x
3
)=x
1
2
+x
2
2
+x
3
2
+2ax
1
x
2
+2x
1
x
3
+2bx
2
x
3
的秩为1,且(0,1,-1)
T
为二次型的矩阵A的特征向量.
(Ⅰ)求常数a,b;
(Ⅱ)求正交变换X=QY,使二次型X
T
AX化为标准形。
选项
答案
(Ⅰ)A=[*],由rA=1得a=b, [*] (Ⅱ)A=[*]的特征值为0,0,3, [*] 令Q=[*]及X=QY,则f=3y
3
。
解析
转载请注明原文地址:https://kaotiyun.com/show/tqx4777K
0
考研数学三
相关试题推荐
设且存在三阶非零矩阵B,使得AB=0,则a=________,b=________.
设a,b,a+b均非0,则行列式=________.
设函数f(x,y)可微,且f(1,1)=1,f’x(1,1)=a,f’y(1,1)=b。又记φ(x)=f{x,f[x,f(x,x)]},则φ1(1)=_____________________。
某企业生产某种商品的成本函数为C=a+bQ+cQ2,收入函数为R=lQ—sQ2,其中常数a,b,C,l,s都是正常数,Q为销售量,求:(Ⅰ)当每件商品的征税额为t时,该企业获得最大利润时的销售量;(Ⅱ)当企业利润最大时,t为何值时征税收益最大.
设三阶矩阵A的特征值为﹣2,0,2,则下列结论不正确的是().
设A为三阶实对称矩阵,,矩阵A有一个二重特征值且r(A)=2.(Ⅰ)求矩阵A;(Ⅱ)用正交变换法化二次型XTAX为标准形.
设A为n阶非奇异矩阵,α为n维列向量,b为常数,记分块矩阵其中A*是矩阵A的伴随矩阵,I为n阶单位矩阵.(1)计算并化简PQ;(2)证明:矩阵Q可逆的充分必要条件是αTA-1α≠b.
计算二重积分,其中D为x2+y2=1,x2+y2=2x所围中间一块区域.
就a,b的不同取值情况讨论方程组何时无解、何时只有唯一解、何时有无数个解?在有无数个解时求其通解.
A、I2>1>I1.B、I2>I1>1.C、1>I2>I1.D、1>I1>I2.B将1也写成一个定积分从而为比较I1,I2,I的大小,只要比较的大小.由于当x>0时x>sinx,所以只要比较当0<x<的大小.考虑由于所以φ(x)>0
随机试题
行政诉讼被告负举证责任,但不排除对某些事项应当由原告提供证据。()
细菌的特殊结构不包括
下列哪一项为新药Ⅳ期临床试验的内容之一
患者,男,78岁。患背部有头疽月余,局部疮形平塌,根盘散漫,疮色紫滞,溃后脓水稀少,伴有唇燥口干,便艰溲短,舌质红,脉细数。内治应首选
女性,24岁。病程6年,说有人要害她,常自笑,好追求异性,有时打人摔东西,话多内容凌乱。精神检查:意识清晰,兴奋多语,思维松弛,欣快,主动接触异性,有被害妄想及非系统性妄想,活动增多而无目的性,躯体及神经系统检查未见异常。该患者诊断为
某建设项目需购置甲、乙两种生产设备,甲生产设备基期购置数量2台,单价3万元;报告期购置数量4台,单价2.5万元。生产设备基期购置数量3台,单价4万元;报告期购置数量2台,单价3.5万元。该建设项目设备价格指数为()。
以概念同化的学习方式获得概念主要发生在()阶段。
下列句子中,加下划线词语的意义解释有误的一项是()。
传播按目标受众面的大小与性质,可分为大众传播和分众传播。大众传播是指特定社会集团利用报纸、杂志、书籍、广播、电影、电视等大众媒介向社会大多数成员传送消息、知识的过程。分众传播则是对受众进行区分;向社会特定成员传送消息、知识的过程。根据上述定义,下列不属于
Roger:So,howisyournewroommate?Abby:【D1】______Roger:Whathappened?Abby:She’salwaysmakingloudnoisesatmidnightan
最新回复
(
0
)