首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
(97年)设向量组α1,α2,α3线性无关,则下列向量组中,线性无关的是 【 】
(97年)设向量组α1,α2,α3线性无关,则下列向量组中,线性无关的是 【 】
admin
2017-05-26
49
问题
(97年)设向量组α
1
,α
2
,α
3
线性无关,则下列向量组中,线性无关的是 【 】
选项
A、α
1
+α
2
,α
2
+α
3
,α
3
+α
1
B、α
1
+α
2
,α
2
+α
3
,α
1
+2α
2
+α
3
C、α
1
+α
2
,2α
2
+3α
3
,3α
3
+α
1
D、α
1
+α
2
+α
3
,2α
1
-3α
2
+22α
3
,3α
1
+5α
2
-5α
3
答案
C
解析
显然A组线性相关(第3个向量是前2个向量的差);B组也线性相关(第3个向量是前2个向量的和);对于C组,设有一组数χ
1
,χ
2
,χ
3
,使得
χ
1
(α
1
+2α
2
)+χ
2
(2α
2
+3α
3
)+χ
3
(3α
3
+α
1
)=0
即(χ
1
+χ
3
)α
1
+(2χ
1
+2χ
2
)α
2
+(3χ
2
+3χ
3
)α
3
=0
因为α
1
,α
2
,α
3
线性无关,所以
解得此齐次方程组只有零解χ
1
=χ
2
=χ
3
=0,故C组线性无关.
由于矩阵
的秩为3,知C组线性无关,故选C.
转载请注明原文地址:https://kaotiyun.com/show/ytH4777K
0
考研数学三
相关试题推荐
微分方程y"+y=cosx的一个特解的形式为y"=().
设F(x)在闭区间[0,c]上连续,其导数F’(x)在开区间(0,c)内存在且单调减少,f(0)=0.试应用拉格朗日中值定理证明不等式:F(a+b)≤F(a)+F(b),其中常数,a,b满足条件0≤a≤b≤a+b≤c.
已知线性方程组(Ⅰ)a,b为何值时,方程组有解?(Ⅱ)方程组有解时,求出方程组的导出组的一个基础解系:(Ⅲ)方程组有解时,求出方程组的全部解.
已知齐次线性方程组其中,试讨论a1,a2…an和b满足何种关系时:(Ⅰ)方程组仅有零解;(Ⅱ)方程组有非零解,在有非零解时,求此方程组的一个基础解系.
设n阶矩阵A与B等价,则必有().
设3阶对称矩阵A的特征向量值λ1=1,λ2=2,λ3=-2,又a1=(1,-1,1)T是A的属于λ1的一个特征向量.记B=A5-4A3+E,其中E为3阶单位矩阵.(Ⅰ)验证a1是矩阵B的特征向量,并求B的全部特征值与特征向量;(Ⅱ)求矩阵B.
设矩阵A,B满足A*BA=2BA-8E,其中A=,E为单位矩阵,A*为A的伴随矩阵,则B=________.
设f(x)在[0,1]上二阶可导且f’’(x)<0,证明:
设λ1,λ2是矩阵A的两个不同的特征值,对应的特征向量分别为a1,a2则a1,A(a1+a2)线性无关的充分必要条件是().
设A=(α1,α2,α3,α4)为4阶方阵,且AX=0的通解为X=k(1,1,2,一3)T,则α2由α1,α3,α4表示的表达式为__________.
随机试题
简述防止加热炉炉管结焦的措施。
标志着国际私法统一化开始的事件是()
加强党的建设,必须摆到首位的是()
患者女性,58岁。右乳腺癌术后3年,口服三苯氧胺治疗中。无肝炎史,血糖正常。复查超声应重点检查下列哪几项
患者,女,70岁。住院心电图监测时发生室性心动过速,心率为172次/分,血压为120/80mmHg,意识清楚,双肺呼吸音清晰,无湿啰音。首选的治疗药物是
()是一项着眼于组织、管理与控制的结构化项目管理方法,也是一套科学完整的项目管理知识体系,该方法最初由英国CCTA于1989年建立。
在短期内,通货膨胀率与产出之间的关系可以表述为()。[2006年真题]
对于个人汽车贷款,贷款受理人应要求借款申请人以书面形式提出个人汽车贷款借款申请,申请材料中不一定要包括的是()。
中央电视台开播《百家讲坛》以来,一些艰涩高深的传统经典经过现代诠释变得通俗易懂,富有时代气息,为大众所接受。这说明()。
(2016·安徽)学习成绩好并不意味着道德修养水平高。这要求教师在教学的过程中坚持()
最新回复
(
0
)