首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
(97年)设向量组α1,α2,α3线性无关,则下列向量组中,线性无关的是 【 】
(97年)设向量组α1,α2,α3线性无关,则下列向量组中,线性无关的是 【 】
admin
2017-05-26
44
问题
(97年)设向量组α
1
,α
2
,α
3
线性无关,则下列向量组中,线性无关的是 【 】
选项
A、α
1
+α
2
,α
2
+α
3
,α
3
+α
1
B、α
1
+α
2
,α
2
+α
3
,α
1
+2α
2
+α
3
C、α
1
+α
2
,2α
2
+3α
3
,3α
3
+α
1
D、α
1
+α
2
+α
3
,2α
1
-3α
2
+22α
3
,3α
1
+5α
2
-5α
3
答案
C
解析
显然A组线性相关(第3个向量是前2个向量的差);B组也线性相关(第3个向量是前2个向量的和);对于C组,设有一组数χ
1
,χ
2
,χ
3
,使得
χ
1
(α
1
+2α
2
)+χ
2
(2α
2
+3α
3
)+χ
3
(3α
3
+α
1
)=0
即(χ
1
+χ
3
)α
1
+(2χ
1
+2χ
2
)α
2
+(3χ
2
+3χ
3
)α
3
=0
因为α
1
,α
2
,α
3
线性无关,所以
解得此齐次方程组只有零解χ
1
=χ
2
=χ
3
=0,故C组线性无关.
由于矩阵
的秩为3,知C组线性无关,故选C.
转载请注明原文地址:https://kaotiyun.com/show/ytH4777K
0
考研数学三
相关试题推荐
命题“①若X、Y服从于正态分布且相互独立,则(X,Y)服从于二维正态分布;②若X、Y,服从于正态分布,则(X,Y)服从于维正态分布;③若(X,Y)服从于二维正态分布,则X+Y服从于一维正态分布;④(X,Y)服从于二维正态分布的充分必要条件是X、Y分别服从于
设3阶实对称矩阵A的特征值是1,2,3,矩阵A的属于特征值1,2的特征向量分别是a1=(-1,-1,1)T,a2=(1,-2,-1)T.(Ⅰ)求A的属于特征值3的特征向量;(Ⅱ)求矩阵A.
已知线性方程组(Ⅰ)a,b为何值时,方程组有解?(Ⅱ)方程组有解时,求出方程组的导出组的一个基础解系:(Ⅲ)方程组有解时,求出方程组的全部解.
设n阶矩阵A与B等价,则必有().
设A,B为同阶方阵,(1)如果A,B相似,试证A,B的特征多项式相等.(2)举一个二阶方阵的例子说明(1)的逆命题不成立.(3)当A,曰均实对称矩阵时,试证(1)的逆命题成立.
设矩阵,则A3的秩为__________.
求一个正交变换,化二次型f=x12+4x22+4x32-4x1x2-8x2x3,为标准形.
设A为三阶方阵,α为三维列向量,已知向量组α,Aα,A2α线性无关,且A3α=3Aα一2A2α.证明:矩阵B=(α,Aα,A4α)可逆;
设二次型f(x1,x2,x3)=5x12+ax22+3x32一2x1x2+6x1x3-6x2x3的矩阵合同于(Ⅰ)求常数a;(Ⅱ)用正交变换法化二次型f(x1,x2,x3)为标准形.
随机试题
孙中山认为:政治革命的根本是
Inthepast,Americanfamilies【36】tobequitelarge.Parents【37】fiveormorechildrenwerecommon.Overtheyears,the【38】ofthe
A.>30%的原始细胞,CD41阳性B.淋巴结病理组织学检查C.骨髓病理组织学检查D.骨髓中环形铁粒幼细胞17%,原始细胞4%,病态造血E.血、尿中出现单克隆免疫球蛋白增多,骨髓异常浆细胞占25%符合急性巨核细胞白血病的确诊
牙尖交错位时,其上颌切牙切缘位于下颌切牙唇面的切1/2内,应为
脓性指头炎如不及时治疗常可引起
航班显示系统电缆敷设方式有()。
下列各句中,存在歧义的一句是()
一个花匠正在配制插花。可供配制的花共有苍兰、玫瑰、百合、牡丹、海棠和秋菊6个品种,一件合格的插花必须至少由两种花组成,并同时满足以下条件:如果有苍兰或海棠,则不能有秋菊;如果有牡丹,则必须有秋菊,如果有玫瑰,则必须有海棠。以下各项所列的两种花都可以单独或与
可能今年有的城市房地产价格会下降。据此可以推出:
视频点播按其交互程度可分为真视频点播(TVOD)和准视频点播(NVOD),NVOD的实现方法是(26)。当VOD利用有线电视网或电话网实现时,常采用(27)。VOD系统的服务器要求能存储特大的信息量且具有高速传输能力,因此可采用(28)。与文件服务器相比,
最新回复
(
0
)