首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
(97年)设向量组α1,α2,α3线性无关,则下列向量组中,线性无关的是 【 】
(97年)设向量组α1,α2,α3线性无关,则下列向量组中,线性无关的是 【 】
admin
2017-05-26
30
问题
(97年)设向量组α
1
,α
2
,α
3
线性无关,则下列向量组中,线性无关的是 【 】
选项
A、α
1
+α
2
,α
2
+α
3
,α
3
+α
1
B、α
1
+α
2
,α
2
+α
3
,α
1
+2α
2
+α
3
C、α
1
+α
2
,2α
2
+3α
3
,3α
3
+α
1
D、α
1
+α
2
+α
3
,2α
1
-3α
2
+22α
3
,3α
1
+5α
2
-5α
3
答案
C
解析
显然A组线性相关(第3个向量是前2个向量的差);B组也线性相关(第3个向量是前2个向量的和);对于C组,设有一组数χ
1
,χ
2
,χ
3
,使得
χ
1
(α
1
+2α
2
)+χ
2
(2α
2
+3α
3
)+χ
3
(3α
3
+α
1
)=0
即(χ
1
+χ
3
)α
1
+(2χ
1
+2χ
2
)α
2
+(3χ
2
+3χ
3
)α
3
=0
因为α
1
,α
2
,α
3
线性无关,所以
解得此齐次方程组只有零解χ
1
=χ
2
=χ
3
=0,故C组线性无关.
由于矩阵
的秩为3,知C组线性无关,故选C.
转载请注明原文地址:https://kaotiyun.com/show/ytH4777K
0
考研数学三
相关试题推荐
已知齐次线性方程组其中,试讨论a1,a2…an和b满足何种关系时:(Ⅰ)方程组仅有零解;(Ⅱ)方程组有非零解,在有非零解时,求此方程组的一个基础解系.
设有三维列向量(Ⅰ)β可由a1,a2,a3,线性表示,且表达式唯一;(Ⅱ)β可由a1,a2,a3线性表示,且表达式不唯一;(Ⅲ)β不能由a1,a2,a3线性表示.
设n维向量a=(a,0,…,0,a)T,a>0,E为n阶单位矩阵,矩阵A=E-aaT,B=,其中A的逆矩阵为B,则a=_________.
设向量a=(a1,a2,…,an)T,β=(b1,b2,…,bn)T都是非零向量,且满足条件aTβ=0,记n阶矩阵A=aβT,求:(Ⅰ)A2;(Ⅱ)矩阵A的特征值和特征向量.
设A为n阶实对称矩阵,秩(A)=n,Aij是A=(aij)n×m中元素aij(i,j=1,2,…,n)的代数余子式,二次型f(x1,x2,…,xn)=(Ⅰ)记X=(x1,x2,…,xn)T,把f(x1,x2,…,xn)写成矩阵形式,并证明二次型f(x)的
设A,B为同阶方阵,(1)如果A,B相似,试证A,B的特征多项式相等.(2)举一个二阶方阵的例子说明(1)的逆命题不成立.(3)当A,曰均实对称矩阵时,试证(1)的逆命题成立.
求一个正交变换,化二次型f=x12+4x22+4x32-4x1x2-8x2x3,为标准形.
设A为三阶方阵,α为三维列向量,已知向量组α,Aα,A2α线性无关,且A3α=3Aα一2A2α.证明:BTB是正定矩阵.
二次型f(x1,x2,x3)=2x1x2+2x1x3+2x2x3的规范形为().
设二次型f(x1,x2,x3)=5x12+ax22+3x32一2x1x2+6x1x3-6x2x3的矩阵合同于(Ⅰ)求常数a;(Ⅱ)用正交变换法化二次型f(x1,x2,x3)为标准形.
随机试题
圆截面直杆发生扭转与纯弯曲组合变形时,其中各点的应力状态为()。
发包人在招标工程量清单中给定暂估价的专业工程,依法必须招标的,应当由()依法组织招标选择专业分包人,并接受有管辖权的建设工程招标投标管理机构的监督。
位于市区的某生产企业(具有出口经营权)为增值税一般纳税人,2015年10月出口自产产品,出口货物离岸价(即FOB价)为1250万元人民币,内销货物取得不含税收入200万元人民币,当月发生可以抵扣的进项税额为100万元人民币(取得增值税专用发票,且已通过税务
在Excelr扣,可用下列()进行单元格的选择。
气体内的各种粒子因高温而动能增加,发生相互碰撞而产生游离的形式称为()。
患者,女,24岁,患支气管扩张8年,常反复咯血。因剧咳而致大咯血1天入院,住院期间突然出现咯血不止,患者表情恐怖,张口瞠目,两手乱抓,应考虑发生下列何种紧急状况?()
甲状腺上动脉自何处由颈外动脉发出()。
按照法律的创制主体和适用主体的不同,法律可以分为()
InanarticlesomeChinesescholarsaredescribedasbeing"tantalizedbythemysteriousdragonbonehieroglyphics."Tantalized
Thegroup’smovewill______competitioninthefast-growingChinesePCmarket.
最新回复
(
0
)