首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x),g(x)在[a,b]上连续,在(a,b)内二阶可导,f(a)=f(b)=0,f’+(a)f’-(b)>0, 且g(x)≠0(x∈[a,b]),g’’(x)≠0(a<x<b),证明:存在ξ∈(a,b),使得.
设f(x),g(x)在[a,b]上连续,在(a,b)内二阶可导,f(a)=f(b)=0,f’+(a)f’-(b)>0, 且g(x)≠0(x∈[a,b]),g’’(x)≠0(a<x<b),证明:存在ξ∈(a,b),使得.
admin
2018-01-23
75
问题
设f(x),g(x)在[a,b]上连续,在(a,b)内二阶可导,f(a)=f(b)=0,f’
+
(a)f’
-
(b)>0,
且g(x)≠0(x∈[a,b]),g’’(x)≠0(a<x<b),证明:存在ξ∈(a,b),使得
.
选项
答案
设f’
+
(a)>0,f’
-
(b)>0, 由f’
+
(a)>0,存在x
1
∈(a,b),使得f(x
1
)>f(a)=0; 由f’
-
(b)>0,存在x
2
∈(a,b),使得f(x
2
)<f(b)=0, 因为f(x
1
)f(x
2
)<0,所以由零点定理,存在c∈(a,b),使得f(c)=0. 令h(z)=[*],显然h(x)在[a,b]上连续,由h(a)=h(c)=h(b)=0, 存在ξ
1
∈(a,c),ξ
2
∈(c,b),使得h’(ξ
1
)=h’(ξ)=0, [*] 令φ(x)=f’(x)g(x)-f(x)g’(x),φ(ξ
1
)=φ(ξ
2
)=0, 由罗尔定理,存在ξ∈(ξ
1
,ξ
2
)[*](a,b),使得φ’(ξ)=0, 而φ’(x)=f’’(x)g(x)-f(x)g’’(x),所以[*].
解析
转载请注明原文地址:https://kaotiyun.com/show/GjX4777K
0
考研数学三
相关试题推荐
设总体X服从正态分布N(0,σ2),X1,X2,…,Xn是取自总体X的简单随机样本,其均值、方差分别为则()
某流水线上每个产品不合格的概率为p(0<p<1),各产品合格与否相对独立,当出现1个不合格产品时即停机检修.设开机后第1次停机时已生产了的产品个数为X,求X的数学期望E(X)和方差D(X).
已知一本书中每页印刷错误的个数X服从泊松分布p(0.2),写出X的概率分布,并求一页上印刷错误不多于1个的概率.
已知X~N(15,4),若X的值落入区间(一∞,x1),(x1,x2),(x2,x3),(x3,x4),(x4,+∞)内的概率之比为7:24:38:24:7,则x1,x2,x3,x4分别为()
设随机变量X的概率密度为f(x)=令随机变量(I)求Y的分布函数;(Ⅱ)求概率P{X≤Y}.
设相互独立两随机变量X和Y均服从则可以作出服从二项分布的随机变量是()
微分方程y″+4y=2x2在原点处与y=x相切的特解是__________.
线性方程组有公共的非零解,求a,b的值和全部公共解。
设A=(aij)3×3是实正交矩阵,且a11=1,b=(1,0,0)T,则线性方程组Ax=b的解是_______.
(90年)对某地抽样调查的结果表明,考生的外语成绩(百分制)近似服从正态分布,平均成绩为72分,96分以上的占考生总数的2.3%,试求考生的外语成绩在60分至84分之间的概率.表中Ф(χ)是标准正态分布函数.
随机试题
气滞证的临床表现特点是
既有祛风湿,又有强筋骨功效的药物是()
城市生活垃圾产生量预测的方法一般有()。
假设其他条件相同,如果企业的增值率(不含税增值额/不含税销售额)高于无差别点增值率(3%/17%),则选择成为一般纳税人有助于减轻增值税税负。()
简述影响问题解决的主要因素。
2014年,房地产开发企业房屋施工面积726482万平方米,比上年增长9.2%,增速比1—11月回落0.9个百分点。其中,住宅施工面积515096万平方米,增长5.9%。房屋新开工面积179592万平方米,下降10.7%,降幅扩大1.7个百分点。其中,住宅
辩论赛的主办方决定,除非是来自法学院的大二学生,否则不能取得参赛资格。以下哪项如果为真,说明主办方上述决定没有得到贯彻?I.黄芳是来自法学院的大二学生,没有取得参赛资格Ⅱ.李磊是来自经济学院的学生,取得了参赛资格Ⅲ.刘飞不是大二学生,取得了参赛资格
试析作为“社会群体成员”的受众观。
下列关于美国宪法的表述,正确的是()。
September25,2010TLEFCMr.JohnSutton490LandsdowneRoadBuffalo,NY14203DearJohn,Thankyouverymuchforyouremail.Th
最新回复
(
0
)