首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x),g(x)在[a,b]上连续,在(a,b)内二阶可导,f(a)=f(b)=0,f’+(a)f’-(b)>0, 且g(x)≠0(x∈[a,b]),g’’(x)≠0(a<x<b),证明:存在ξ∈(a,b),使得.
设f(x),g(x)在[a,b]上连续,在(a,b)内二阶可导,f(a)=f(b)=0,f’+(a)f’-(b)>0, 且g(x)≠0(x∈[a,b]),g’’(x)≠0(a<x<b),证明:存在ξ∈(a,b),使得.
admin
2018-01-23
65
问题
设f(x),g(x)在[a,b]上连续,在(a,b)内二阶可导,f(a)=f(b)=0,f’
+
(a)f’
-
(b)>0,
且g(x)≠0(x∈[a,b]),g’’(x)≠0(a<x<b),证明:存在ξ∈(a,b),使得
.
选项
答案
设f’
+
(a)>0,f’
-
(b)>0, 由f’
+
(a)>0,存在x
1
∈(a,b),使得f(x
1
)>f(a)=0; 由f’
-
(b)>0,存在x
2
∈(a,b),使得f(x
2
)<f(b)=0, 因为f(x
1
)f(x
2
)<0,所以由零点定理,存在c∈(a,b),使得f(c)=0. 令h(z)=[*],显然h(x)在[a,b]上连续,由h(a)=h(c)=h(b)=0, 存在ξ
1
∈(a,c),ξ
2
∈(c,b),使得h’(ξ
1
)=h’(ξ)=0, [*] 令φ(x)=f’(x)g(x)-f(x)g’(x),φ(ξ
1
)=φ(ξ
2
)=0, 由罗尔定理,存在ξ∈(ξ
1
,ξ
2
)[*](a,b),使得φ’(ξ)=0, 而φ’(x)=f’’(x)g(x)-f(x)g’’(x),所以[*].
解析
转载请注明原文地址:https://kaotiyun.com/show/GjX4777K
0
考研数学三
相关试题推荐
设X1,X2,…,Xn是取自正态总体N(μ,σ2)的简单随机样本,其均值和方差分别为,则可以作出服从自由度为n的χ2分布的随机变量是()
设二维随机变量(X,Y)的概率密度为(I)求P{X>2Y};(Ⅱ)求Z=X+Y的概率密度.
已知X~N(15,4),若X的值落入区间(一∞,x1),(x1,x2),(x2,x3),(x3,x4),(x4,+∞)内的概率之比为7:24:38:24:7,则x1,x2,x3,x4分别为()
矩阵A=与下面矩阵()相似.
[*]事实上,在几何上原题中积分应等于球体x2+y2+z2≤a2的体积的一半,因此应为
差分方程yt一2yt-1=b(b为常数)的通解是().
级数x2n-1的收敛域为__________.
设A=(α1,α2,α3,α4)是四阶矩阵,A*为A的伴随矩阵,若(1,0,1,0)T是方程组Ax=0的一个基础解系,则A*x=0的基础解系可为()
设f(x)、g(x)在区间[一a,a](a>0)上连续.g(x)为偶函数,且f(x)满足条件f(x)+f(一x)=A(A为常数)(1)证明(2)利用(1)的结论计算定积分
(90年)对某地抽样调查的结果表明,考生的外语成绩(百分制)近似服从正态分布,平均成绩为72分,96分以上的占考生总数的2.3%,试求考生的外语成绩在60分至84分之间的概率.表中Ф(χ)是标准正态分布函数.
随机试题
治疗佝偻病激期维生素D口服法剂量是
计算投资组合的收益率最通用的方法是( )。
被人民法院驳回起诉或者劳动者撤诉的,用人单位可以自收到裁定书之日起()日内,向劳动人事争议仲裁委员会所在地的中级人民法院申请撤销仲裁裁决。
不同气候的不同需要产生了不同的生活方式:不同的生活方式产生了不同种类的法律。热带民族的怯懦常常使这些民族成为奴隶,而寒冷气候的民族的勇敢使他们能够维护自己的自由。这是自然的原因所产生的后果。居住在山地的人坚决主张要求平民政治,平原上的人则要求由一些上层人物
下列汉字书写没有错误的一组是()
成立(1)(2)
在区间(0,1)中随机地取两个数,则事件“两数之和小于”的概率为______.
WhatisthebasichonorintakingpartintheOlympicGames?Accordingtothepassage,theOlympicGamesarenotonlysportgam
Nursing,asatypicallyfemaleprofession,mustdealconstantlywiththefalseimpressionthatnursesaretheretowaitonthep
WhyYouShouldn’tFreakOutAboutSwarmingHoneybees—andHowtoSaveBeesFromThoseWhoDoA)Formanypeople,thelate-spri
最新回复
(
0
)