首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x),g(x)在[a,b]上连续,在(a,b)内二阶可导,f(a)=f(b)=0,f’+(a)f’-(b)>0, 且g(x)≠0(x∈[a,b]),g’’(x)≠0(a<x<b),证明:存在ξ∈(a,b),使得.
设f(x),g(x)在[a,b]上连续,在(a,b)内二阶可导,f(a)=f(b)=0,f’+(a)f’-(b)>0, 且g(x)≠0(x∈[a,b]),g’’(x)≠0(a<x<b),证明:存在ξ∈(a,b),使得.
admin
2018-01-23
72
问题
设f(x),g(x)在[a,b]上连续,在(a,b)内二阶可导,f(a)=f(b)=0,f’
+
(a)f’
-
(b)>0,
且g(x)≠0(x∈[a,b]),g’’(x)≠0(a<x<b),证明:存在ξ∈(a,b),使得
.
选项
答案
设f’
+
(a)>0,f’
-
(b)>0, 由f’
+
(a)>0,存在x
1
∈(a,b),使得f(x
1
)>f(a)=0; 由f’
-
(b)>0,存在x
2
∈(a,b),使得f(x
2
)<f(b)=0, 因为f(x
1
)f(x
2
)<0,所以由零点定理,存在c∈(a,b),使得f(c)=0. 令h(z)=[*],显然h(x)在[a,b]上连续,由h(a)=h(c)=h(b)=0, 存在ξ
1
∈(a,c),ξ
2
∈(c,b),使得h’(ξ
1
)=h’(ξ)=0, [*] 令φ(x)=f’(x)g(x)-f(x)g’(x),φ(ξ
1
)=φ(ξ
2
)=0, 由罗尔定理,存在ξ∈(ξ
1
,ξ
2
)[*](a,b),使得φ’(ξ)=0, 而φ’(x)=f’’(x)g(x)-f(x)g’’(x),所以[*].
解析
转载请注明原文地址:https://kaotiyun.com/show/GjX4777K
0
考研数学三
相关试题推荐
设X1,X2,X3,X4是来自正态总体N(0,22)的简单随机样本,Y=a(X1一2X2)2+b(3X3一4X4)2,则当a=_____,b=______时,统计量服从χ2分布,自由度为_______.
设随机变量X和Y都服从正态分布,则()
设随机变量X的概率密度为求X的分布函数F(x).
若为随机变量X的概率密度函数,则a=______.
设总体X服从正态分布N(0,σ2)(σ2已知),X1,X2,…,Xn是取自总体X的简单随机样本,S2为样本方差,则().
设x→0时,ex2一(ax2+bx+c)是比x2高阶的无穷小,其中a,b,c为常数,则().
设A为三阶矩阵,α1,α2,α3为三维线性无关列向量组,且有Aα1=α2+α3,Aα2=α3+α1,Aα3=α1+α2.(1)求A的全部特征值;(2)A是否可对角化?
已知A,B为三阶矩阵,且有相同的特征值1,2,2,则下列命题:①A,B等价;②A,B相似;③若A,B为实对称矩阵,则A,B合同;④行列式|A一2E|=|2E—A|中;命题成立的有().
设有大小相同、标号分别为1,2,3,4,5的五个球,同时有标号为1,2,…,10的十个空盒.将五个球随机放入这十个空盒中,设每个球放入任何一个盒子的可能性都是一样的,并且每个空盒可以放五个以上的球,计算下列事件的概率:(1)A={某指定的五个盒子中各有一
细菌的增长率与总数成正比.如果培养的细菌总数在24小时内由100增长到400,求前12小时后的细菌总数.
随机试题
在机体水液代谢过程中起主要作用的脏腑是
关于tRNA转录后加工,正确的是
下列哪个(些)临床症状提示为中度有机磷酸酯类中毒
除财政部门外,对单位会计实施监督的还有()
甲公司为增值税一般纳税人,2015年11月进口一批化妆品,海关核定的关税完税价格为70万元,甲公司缴纳进口关税7万元、进口消费税33万元。已知增值税税率为17%。甲公司进口该批化妆品应当缴纳的增值税税额为()。
情绪情感的定义是什么?
峰终定律是指人记忆某项事物的体验取决于开始和结束时的感觉。根据上述定义,下列选项没有运用到峰终定律的是()。
阅读下列程序说明和C++程序,把应填入其中(n)处的字句,写对应栏内。【说明】下面的程序实现了类String的构造函数、析构函数和赋值函数。已知类String的原型为:classString{public:
•ReadthearticlebelowaboutNewtown.•Foreachquestion31-40,writeonewordonyourAnswerSheet.
Thebuildingnow______downisouroldofficebuilding.
最新回复
(
0
)