首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知曲线L的方程为 (Ⅰ)讨论L的凹凸性; (Ⅱ)过点(-1,0)引L的切线,求切点(x0,y0),并写出切线的方程: (Ⅲ)求此切线与L(对应于x≤x0的部分)及x轴所围成的平面图形的面积.
已知曲线L的方程为 (Ⅰ)讨论L的凹凸性; (Ⅱ)过点(-1,0)引L的切线,求切点(x0,y0),并写出切线的方程: (Ⅲ)求此切线与L(对应于x≤x0的部分)及x轴所围成的平面图形的面积.
admin
2013-09-15
97
问题
已知曲线L的方程为
(Ⅰ)讨论L的凹凸性;
(Ⅱ)过点(-1,0)引L的切线,求切点(x
0
,y
0
),并写出切线的方程:
(Ⅲ)求此切线与L(对应于x≤x
0
的部分)及x轴所围成的平面图形的面积.
选项
答案
(Ⅰ)先求d
2
y/dx
2
.由已知[*] 代入y得[*] 所以曲线L是凸的. (Ⅱ)设L上切点(x
0
,y
0
)处的切线方程是y-y
0
=[*] 令x=-1,y=0,则有[*] 再令[*] ,即t
0
2
+t
0
-2=0. 解得t
0
=1,t
0
=-2(不合题意).所以切点是(2,3),相应的切线方程是 y=3+(x-2),且y=x+1 (Ⅲ)切点为(x
0
,y
0
)的切线与L及x轴所围成的平面图形如 图所示,则所求平面图形的面积为 [*]
解析
转载请注明原文地址:https://kaotiyun.com/show/Gn34777K
0
考研数学二
相关试题推荐
(2018年)设某产品的成本函数C(Q)可导,其中Q为产量.若产量为Q0时平均成本最小,则()
(2014年)设随机变量X与Y的概率分布相同,X的概率分布为P{X=0}=,P{X=1}=,且X与Y的相关系数ρXY=(Ⅰ)求(X,Y)的概率分布;(Ⅱ)求P{X+Y≤1}。
(06年)设随机变量X的概率密度为令Y=X2,F(χ,y)为二维随机变量(X,Y)的分布函数.求(Ⅰ)Y的概率密度FY(y);(Ⅱ)Cov(X,Y);(Ⅲ)F(-,4).
(93年)假设:(1)函数y=f(χ)(0≤χ<+∞)满足条件f(0)=0,和0≤0(χ)≤eχ-1;(2)平行于y轴的动直线MN与曲线y=f(χ)和y=eχ-1分别相交于点p1和p2;(3)曲线y=f(χ),直线MN与χ轴所围封闭图形
(2009年)(Ⅰ)证明拉格朗日中值定理:若函数f(x)在[a,b]上连续,在(a,b)内可导,则存在ξ∈(a,b),使得f(B)一f(A)=f’(ξ)(b一a).Ⅱ)证明:若函数f(x)在x=0处连续,在(0,δ)(δ>0)内可导,且,则f+’(
(06年)在χOy坐标平面上,连续曲线L过点M(1,0),其上任意点P(χ,y)(χ≠0)处的切线斜率与直线OP的斜率之差等于aχ(常数a>0).(Ⅰ)求L的方程;(Ⅱ)当L与直线y=aχ所围成平面图形的面积为时,确定a的值.
(08年)如图,曲线段的方程为y=f(χ),函数f(χ)在区间[0,a]上有连续的导数,则定积分∫0aχf′(χ)dχ等于【】
(2001年)将一枚硬币重复掷n次,以X和Y分别表示正面向上和反面向上的次数,则X和Y的相关系数等于()
(2000年)设函数f(x)在[0,π]上连续,且∫0πf(x)dx=0,∫0πf(x)cosxdx=0.试证明:在(0,π)内至少存在两个不同的点ξ1,ξ2,使f(ξ1)=f(ξ2)=0.
(2006年)设非齐次线性微分方程y’+P(x)y=Q(x)有两个不同的解y1(x),y2(x),C为任意常数,则该方程的通解是()
随机试题
通常固体催化剂的机械强度取决于其载体的机械强度。()
简述直线职能制的概念及特点。
上消化道出血的患者,伴有发热及右上腹痛,应考虑()
适当的交货地点是指()。
证券投资技术分析中,K线组合应用中的星型组合包括()。Ⅰ.锤头与吊颈Ⅱ.射击之星Ⅲ.黄昏之星Ⅳ.早晨之星
(2013年)某投资者购买A公司股票,并且准备长期持有,要求的最低收益率为11%,该公司本年的股利为0.6元/股,预计未来股利年增长率为5%,则该股票的内在价值是()元/股。
写字楼的基础租金是根据业主投资收益率目标和其可接受的()水平确定的。
MBS是一家美国知名的电脑公司,去年在人员的绩效管理上,MBS公司取消了以往绩效七级考核的评等方式,而改采用新的四级(1、2、3、4)评等方式,并实行钟形的绩效考评原则,即除非有例外状况,绝大多数的员工都能得到2等。MBS公司将这种新的绩效管理方案
I=∫Lyzdx+3zxdy-xydz,其中L是曲线且顺着x轴的正向看是沿逆时针方向.
Highereducationisn’tforeveryone,andpeoplehaveavarietyofpathstochoosefromoncetheygraduatefromhighschool.They
最新回复
(
0
)