设3阶实对称矩阵A的各行元素之和均为3,向量α1=(一1,2,一1)T,α2=(0,一1,1)T、是线性方程组Ax=0的两个解. 求A的特征值与特征向量;

admin2018-08-03  25

问题 设3阶实对称矩阵A的各行元素之和均为3,向量α1=(一1,2,一1)T,α2=(0,一1,1)T、是线性方程组Ax=0的两个解.
求A的特征值与特征向量;

选项

答案由于矩阵A的各行元素之和均为3,所以 [*] 因为Aα1=0,Aα2=0,即 Aα1=0α1,Aα2=0α2 故由定义知λ12=0是A的二重特征值,α1,α2为A的属于特征值0的两个线性无关特征向量;λ3=3是A的一个特征值,α3=(1,1,1)T为A的属于特征值3的特征向量. 总之,A的特征值为0,0,3.属于特征值0的全体特征向量为k1α1+k2α2(k1,k2不全为零),属于特征值3的全体特征向量为k3α3(k3≠0).

解析
转载请注明原文地址:https://kaotiyun.com/show/Gug4777K
0

最新回复(0)