首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)在[a,b]上有定义,M>0且对任意的x,y∈[a,b],有|f(x)-f(y)|≤M|x-y|k. (1)证明:当k>0时,f(x)在[a,b]上连续; (2)证明:当k>1时,f(x)≡常数.
设f(x)在[a,b]上有定义,M>0且对任意的x,y∈[a,b],有|f(x)-f(y)|≤M|x-y|k. (1)证明:当k>0时,f(x)在[a,b]上连续; (2)证明:当k>1时,f(x)≡常数.
admin
2017-12-31
46
问题
设f(x)在[a,b]上有定义,M>0且对任意的x,y∈[a,b],有|f(x)-f(y)|≤M|x-y|
k
.
(1)证明:当k>0时,f(x)在[a,b]上连续;
(2)证明:当k>1时,f(x)≡常数.
选项
答案
(1)对任意的x
0
∈[a,b],由已知条件得 0≤|f(x)-f(x
0
)|≤M|x-x
0
|
k
,[*]f(x)=f(x
0
), 再由x
0
的任意性得f(x)在[a,b]上连续. (2)对任意的x
0
∈[a,b],因为k>1, 所以0≤[*]≤M|x-x
0
|
k-1
,由夹逼定理得f’(x
0
)=0,因为x
0
是任意一点,所以f’(x)≡0,故f(x)≡常数.
解析
转载请注明原文地址:https://kaotiyun.com/show/GxX4777K
0
考研数学三
相关试题推荐
已知二次型f(x1,x2,x3)=2x12+3x22+3x32+2ax2x3(n>0)通过正交变换化成标准形f=y12+2y22+5y32,求参数a及所用的正交变换矩阵P。
设有向量组(Ⅰ):α1=(1,0,2)T,α2=(1,1,3)T,α3=(1,一1,a+2)T和向量组(Ⅱ):β1=(1,2,a+3)T,β2=(2,1,a+6)T,β3=(2,1,a+4)T。试问:当a为何值时,向量组(Ⅰ)与(Ⅱ)等价?当a为何值时,
已知线性方程组a,b,c满足何种关系时,方程组有无穷多组解?并用基础解系表示全部解。
设区域D1为以(0,0),(1,1),为顶点的四边形,D2为以为顶点的三角形,而D由D,与D:合并而成。随机变量(X,Y)在D上服从均匀分布,求关于X、Y的边缘密度fX(x)、fY(y)。
对某地抽样调查的结果表明,考生的外语成绩(百分制)近似服从正态分布,平均成绩为72分,96分以上的占考生总数的2.3%,试求考生的外语成绩在60分至84分之间的概率。表中Ф(x)是标准正态分布函数。
(I)设随机变量x服从指数分布e(λ),证明:对任意非负实数s及t,有P(X≥s+t|X≥s)=P(X≥t).这个性质叫做指数分布的无记忆性.(Ⅱ)设电视机的使用年数X服从指数分布e(0.1),某人买了一台旧电视机,求还能使用5年以上
设α,β是三维单位正交列向量,令A=αβT+βαT.证明:(1)|A|=0;(2)α+β,α-β是A的特征向量;(3)A相似于对角阵,并写出该对角阵.
如图由y=0,x=8,y=x2围成一曲边三角形OAB,在曲边上求一点,使得过此点所作y=x2的切线与OA、AB所围成的三角形面积为最大.
函数f(u,u)由关系式f[xg(y,y]=x+g(y)确定,其中函数g(y)可微,且g(y)≠0,则=____________.
设其中f,g均可微,则=__________.
随机试题
下列不属于经济全球化主要内容的是()
心内兴奋传导最易发生阻滞的部位是
英汉对照术语A、循证医学B、药学服务C、药物信息D、治疗药物监测E、药物不良事件ADE(AdverseDrugEvent)
关于检察院办理死刑上诉、抗诉案件的开庭前审查程序,下列哪些说法是正确的?
一只“100Ω、100W”,的电阻与120V电源相串联,要使该电阻正常工作至少要串入的电阻R为()。
一般而言,项目质量计划主要包括的内容有()。
价值工程中,功能整理是用系统的观点将已定义了的功能加以系统化找出各局部功能相互之间的逻辑关系是并列关系还是上下位置关系,表达这种功能之间关系可用()。
风水在古代其实包含有很深的科学成分,“依山而建,傍水而居”、“面南背北,坐北朝南”几千年流传下来,若非其有着极强的______价值.到今天也不至于被建筑商和民间如此______。填入划横线部分最恰当的一项是:
McDonald’s,Greggs,KFCandSubwayaretodaynamedasthemostlitteredbrandsinEnglandasKeepBritainTidy【C1】______fast-foo
为了建立如图所示的存储结构(即每个结点含两个域,data是数据域,next是指向结点的指针域),则在【】处应填入的选项是Structlink{chardata;【】}node;
最新回复
(
0
)