首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(χ)在[0,3]上连续,在(0,3)内二阶可导,且2f(0)=∫02f(t)dt-f(2)+f(3). 证明:(1)存在ξ1,ξ2∈(0,3),使得f′(ξ1)=f′(ξ2)=0. (2)存在ξ∈(0,3),使得f〞(ξ)-2f′(ξ
设f(χ)在[0,3]上连续,在(0,3)内二阶可导,且2f(0)=∫02f(t)dt-f(2)+f(3). 证明:(1)存在ξ1,ξ2∈(0,3),使得f′(ξ1)=f′(ξ2)=0. (2)存在ξ∈(0,3),使得f〞(ξ)-2f′(ξ
admin
2019-08-23
107
问题
设f(χ)在[0,3]上连续,在(0,3)内二阶可导,且2f(0)=∫
0
2
f(t)dt-f(2)+f(3).
证明:(1)存在ξ
1
,ξ
2
∈(0,3),使得f′(ξ
1
)=f′(ξ
2
)=0.
(2)存在ξ∈(0,3),使得f〞(ξ)-2f′(ξ)=0.
选项
答案
(1)令F(χ)=∫
0
χ
f(t)dt,F′(χ)=f(χ), ∫
0
2
f(t)dt=F(2)-F(0)=F′(c)(2-0)=2f(c),其中0<c<2. 因为f(χ)在[2,3]上连续,所以f(χ)在[2,3]上取到最小值m和最大值M, m≤[*]≤M, 由介值定理,存在χ
0
∈[2,3],使得f(χ
0
)=[*],即f(2)+f(3)=2f(χ
0
), 于是f(0)=f(c)=f(χ
0
), 由罗尔定理,存在ξ
1
∈(0,c)[*](0,3),ξ
2
∈(c,χ
0
)[*](0,3),使得f′(ξ
1
)=f′(ξ
2
)=0. (2)令φ(χ)=e
-2χ
f′(χ),φ(ξ
1
)=φ(ξ
2
)=0, 由罗尔定理,存在ξ∈(ξ
1
,ξ
2
)[*](0,3),使得φ′(ξ)=0, 而φ′(χ)=e
-2χ
[f〞(χ)-2f′(χ)]且e
-2χ
≠0,故f〞(ξ)-2f′(ξ)=0.
解析
转载请注明原文地址:https://kaotiyun.com/show/H9A4777K
0
考研数学二
相关试题推荐
证明函数恒等式,x∈(一1,1)。
设f(x)连续,且∫0xtf(2x一t)dt=arctanx3,f(1)=1,求∫12f(x)dx。
当0≤θ≤π时,对数螺旋r=eθ的弧长为______。
(I)设A是n阶方阵,满足A2=A,证明A相似于对角矩阵;(Ⅱ)设A=,求可逆矩阵P使得P-1AP=A,其中A是对角矩阵.
求.要求写出详细的推导过程.
设平面图形D由摆线x=a(t-sint),y=a(1-cost),0≤t≤2π,a>0的第一拱与x轴围成,求该图形D对y轴的面积矩My.
设函数y=y(χ)可导并满足y〞(χ-1)y′+χ2y=eχ,且y′(0)=1,若=a,求a.
求曲线x3-xy+y3=1(x≥0,y≥0)上的点到坐标原点的最长距离与最短距离。
从一艘破裂的油轮中渗漏出来的油,在海面上逐渐扩散形成油层.设在扩散的过程中,其形状一直是一个厚度均匀的圆柱体,其体积也始终保持不变.已知其厚度h的减少率与h3成正比,试证明:其半径r的增加率与r3成反比.
求极限
随机试题
出纳员不得兼管稽核与会计档案保管工作。判断:理由:
依据中国半殖民地半封建社会的国情,论述中国革命走农村包围城市、武装夺取政权新道路的必要性。
新生儿缺氧缺血性脑病输液量限制在()
具有降逆化痰、益气和胃功效的方是
环境污染不是指
前额部及眉棱骨等处的头痛多为()
项目目标动态控制的工作程序有( )。
capitalconstraint
CantheMangoswimmingthatday?
A、Theirinabilitytocirculatewater.B、Theirincreasedsensitivitytoheat.C、Lowreproductiverates.D、Heavypollutioninthe
最新回复
(
0
)