首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
求f(x,y,z)=x+y—z2+5在区域Ω:x2+y2+z2≤2上的最大值与最小值.
求f(x,y,z)=x+y—z2+5在区域Ω:x2+y2+z2≤2上的最大值与最小值.
admin
2019-01-29
87
问题
求f(x,y,z)=x+y—z
2
+5在区域Ω:x
2
+y
2
+z
2
≤2上的最大值与最小值.
选项
答案
f(x,y,z)在有界闭区域Ω上连续,一定存在最大、最小值. 第一步,先求f(x,y,z)在Ω内的驻点. 由[*]f(x,y,z)在Ω内无驻点,因此f(x,y,z)在Ω的最大、最小值都只能在Ω的边界上达到. 第二步,求f(x,y,z)在Ω的边界x
2
+y
2
+z
2
=2上的最大、最小值, 方法: 即求f(x,y,z)在条件x
2
+y
2
+z
2
—2=0下的最大、最小值.令F(x,y,z,λ)=x+y—z
2
+5+λ(x
2
+y
2
+z
2
—2),解方程组 [*] 由①,②→x=y,由③→z=0或λ=1.由x=y,z=0代入④→x=y=±1,z=0.当λ=1时由①,②,得x=y=[*].因此得驻点P
1
(—1,—1,0),P
2
(1,1,0),P
3
[*] 计算得知f(P
1
)=3,f(P
2
)=7,f(P
3
)=f(P
4
)=[*]. 因此,f(x,y,z)在Ω的最大值为7,最小值为[*].
解析
转载请注明原文地址:https://kaotiyun.com/show/pwj4777K
0
考研数学二
相关试题推荐
若f(x)==0,则()
求微分方程(3xx+2xy一yx)dx+(x2一2xy)dy=0的通解.
已知f(x)是周期为5的连续函数,它在x=0的某邻域内满足关系式:f(1+sinx)一3f(1一sinx)=8x+α(x),其中α(x)是当x→0时比x高阶的无穷小,且f(x)在x=1处可导,求y=f(x)在点(6,f(6))处的切线方程.
试分析下列各个结论是函数z=f(x,y)在点P0(x0,y0)处可微的充分条件还是必要条件.(1)二元函数的极限f(x,y)存在;(2)二元函数z=f(x,y)在点(x0,y0)的某个邻域内有界;(3)f(x0,y)=f(x0
计算∫arcsin(a>0是常数).
已知α1,α2,…,αs线性无关,β可由α1,α2,…,αs线性表出,且表示式的系数全不为零,证明:α1,α2,…,αs,β中任意5个向量线性无关.
证明:实对称矩阵A可逆的充分必要条件为存在实矩阵B,使得AB+BTA正定.
求下列积分:(x3+sin2x)cos2xdx.
设D是由x≥0,y≥x与x2+(y-b)2≤b2,x2+(y-a)2≥a2(0<a<b)所围成的平面区域,求
设y=(1+x2)arctanx,求y’.
随机试题
血淋与尿血的鉴别要点,在于()(1991年第68题)
文小雨加入了学校的旅游社团组织,正在参加与组织暑期到台湾日月潭的夏令营活动,现在需要制作一份关于日月潭的演示文稿。根据以下要求,并参考“参考图片.docx”文件中的样例效果,完成演示文稿的制作。将第3张幻灯片中标题下的文字转换为表格,表格的内容参考样例
IsNutritiousFoodReallyPricier,and,Ifso,IsThatReallytheProblem?A)Nobodydisagrees:WeAmericanseatbadly.Wee
求微分方程xy’+y=4x3+3x2+2x+1的通解.
WhenIwasabout12Ihadanenemy,agirlwholikedtopointoutmyshortcomings.Weekbyweekherlistgrew:Iwasskinny,Iw
A.清热利湿退黄B.清热通便C.和胃退黄D.利湿清热退黄E.润燥通便茵陈蒿汤的功用是
秦始皇陵位于陕西临潼县,北宋帝陵位于河南开封境内。()
注意事项1.本题本由给定资料与作答要求两部分构成。考试时限为150分钟。其中,阅读给定资料参考时限为40分钟,作答参考时限为110分钟。满分100分。2.监考人员宣布考试开始时,你才可以开始答题。3.请在题本、答题纸指定位置填
设f(x)和g(x)在(一∞,+∞)内可导,且f(x)<g(x),则必有().
Paintersoftime’Theworld’sfascinationwiththemystiqueofAustralianAboriginalart.’
最新回复
(
0
)