首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
(2009年)设曲线y=f(x),其中y=f(x)是可导函数,且f(x)>0。已知曲线y=f(x) 与直线y=0,x=1及x=t(t>1)所围成的曲边梯形绕x轴旋转一周所得的立体体积值是该曲边梯形面积值的πt倍,求该曲线方程。
(2009年)设曲线y=f(x),其中y=f(x)是可导函数,且f(x)>0。已知曲线y=f(x) 与直线y=0,x=1及x=t(t>1)所围成的曲边梯形绕x轴旋转一周所得的立体体积值是该曲边梯形面积值的πt倍,求该曲线方程。
admin
2021-01-25
103
问题
(2009年)设曲线y=f(x),其中y=f(x)是可导函数,且f(x)>0。已知曲线y=f(x) 与直线y=0,x=1及x=t(t>1)所围成的曲边梯形绕x轴旋转一周所得的立体体积值是该曲边梯形面积值的πt倍,求该曲线方程。
选项
答案
旋转体的体积为V=∫
1
t
πf
2
(x)dx=π∫
1
t
f
2
(x)dx。曲边梯形的面积为S=∫
1
t
f(x)dx,则由题可知 V=πtS,即π∫
1
t
f
2
(x)dx=πt∫
1
t
f(x)dx,也就是∫
1
t
f
2
(x)dx=t∫
1
t
f(x)dx。 两边对t求导可得 f
2
(t)=∫
1
t
f(x)dx+tf(t),即f
2
(t)一tf(t)=∫
1
t
f(x)dx (*) 继续求导可得 2f(t)f’(t)一f(t)一tf’(t)=f(t), 记f(t)=y,化简可得 [*] 在(*)式中令t=1,则f
2
(1)一f(1)=f(1)[f(1)一1]=0,因为f(t)>0,所以f(1)=1。代入[*] 所以该曲线方程为[*]
解析
转载请注明原文地址:https://kaotiyun.com/show/HAx4777K
0
考研数学三
相关试题推荐
下列广义积分发散的是().
以下极限等式(若右端极限存在,则左端极限存在且相等)成立的个数是()
[2015年]设矩阵若集合Ω={1,2},则线性方程组AX=b有无穷多解的充分必要条件为().
[2009年]设A,P为三阶矩阵,PT为P的转置矩阵,且若P=[α1,α2,α3],Q=[α1+α2,α2,α3],则QTAQ为().
设F(x)=f(x)g(x),其中函数f(x),g(x)在(一∞,+∞)内满足以下条件:f’(x)=g(x),g’(x)=f(x),且f(0)=0,f(x)+g(x)=2ex.(1)求F(x)所满足的一阶方程;(2)求出F(x)的表达式.
设随机变量X的概率密度为以Y表示对X的三次独立重复观察中事件{X≤1/2)出现的次数,则P(Y=2)=____________.
将一枚均匀的硬币接连掷5次,结果反面至少出现了一次,试求:(1)正面出现次数X的概率分布;(2)正面出现的次数与反面出现的次数之比Y的概率分布.
(99年)设矩阵A=且|A|=-1,又设A的伴随矩阵A*有特征值λ0,属于λ0的特征向量为α=(-1,-1,1)T.求a,b,c及λ0的值.
设{an}为正项数列,下列选项正确的是
设α1,α2,...,αs均为n维列向量,A是m×n矩阵,下列选项正确的是
随机试题
简述中国资产阶级的双重特点和性格。
药品生产、经营企业和医疗卫生机构在发现新的或严重的药品不良反应后应于发现之日起
A.骨软骨瘤B.骨巨细胞瘤C.骨肉瘤D.骨转移性癌E.骨囊肿女,18岁,左膝内下硬性肿块2月,无痛。X片示:左胫骨干骺端内侧有正常骨组织的疣状肿物,界限清楚,无骨膜反应,诊断首先考虑:
城市道路路基施工要求中,碾压时视土干湿程度而决定采取的措施不包括()。
下列各项中,属于投资项目现金流出量内容的有()。
下列经济业务事项,既属于财物的收发、增减和使用,又属于收入、支出、费用和成本计算的是()。
我国法律规定,对不办理外国人旅行证、未经批准前往不对外国人开放地的外国人,可以处警告或者()以下罚款;情节严重的,并处限期出境。
研究表明,进入雷云的宇宙射线,使得雷云中的空气产生电离,进而在周围产生出许多悬浮的自由电子,已在云层中的电场,则使自由电子带有更高的能量。当空气中的现有电子和水分子碰撞时,释放出更多的电子,研究者将其称之为高能量微粒的雪暴,最终产生一次“逃逸崩溃”,这种放
社会主义阵营形成时,南斯拉夫被排斥在外的主要原因是()。
Educationofexceptionalchildrenmeansprovisionofspecialeducationalservicestothosechildrenwhoareeitherhandicappedo
最新回复
(
0
)