首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
[2002年] 设随机变量X和y的联合概率分布为 则X2和Y2的协方差cov(X2,Y2)=___________.
[2002年] 设随机变量X和y的联合概率分布为 则X2和Y2的协方差cov(X2,Y2)=___________.
admin
2019-04-15
35
问题
[2002年] 设随机变量X和y的联合概率分布为
则X
2
和Y
2
的协方差cov(X
2
,Y
2
)=___________.
选项
答案
-0.02
解析
解一 由cov(X
2
,Y
2
)=E(X
2
Y
2
)-E(X
2
)E(Y
2
)知,需先求出X
2
,Y
2
及X
2
Y
2
的分布,然后再求其期望值.可用同一表格法一并解决.
A则
故E(X
2
)=0.6,E(Y
2
)=0.5,E(X
2
Y
2
)=0.28,因而
cov(X
2
,Y
2
)=E(X
2
Y
2
)-E(X
2
)E(Y
2
)=0.28-0.6×0.5=-0.02.
解二 利用下述公式求之.设X的分布律为P(X=x
i
)=p
i
(i=1,2,…),则X的函数g(X)的期望
若(X,Y)的联合分布律为P(X=x
i
,Y=y
j
)=p
ij
(i,j=1,2,…),N(X,Y)的函数g(X,Y)的期望由式(3.4.2.1)得到
于是不用求出X
2
Y
2
的分布,直接由定义求得,即
E(X
2
Y
2
)=0
2
×(-1)
2
×0.07+0
2
×0
2
×0.18+0
2
×1
2
×0.15+1
2
×(-1)
2
×0.08+1
2
×0
2
×0.32+1
2
×1
2
×0.20=0.28.
又由联合分布律易求得边缘分布律为
由式(3.4.1.1)有
E(X
2
)=0
2
×0.4+1
2
×0.6=0.6, E(Y
2
)=0
2
×0.5+1
2
×0.5=0.5.
故 cov(X
2
,Y
2
)=E(X
2
Y
2
)-E(X
2
)E(Y
2
)=0.28-0.6×0.5=-0.02.
注:公式
转载请注明原文地址:https://kaotiyun.com/show/P7P4777K
0
考研数学三
相关试题推荐
设f(x)在[1,2]上连续,在(1,2)内可导,且f’(x)≠0,证明:存在ξ,η,ζ∈(1,2),使得
设A为二阶矩阵,且A的每行元素之和为4,且|E+A|=0,则|2E+A2|为().
设为A*的特征向量,求A*的特征值λ及a,b,c和A对应的特征值μ.
判断级数的敛散性.
已知(x,y)在以点(0,0),(1,一1),(1,1)为顶点的三角形区域上服从均匀分布。(Ⅰ)求(X,Y)的联合密度函数f(x,y);(Ⅱ)求边缘密度函数fX(x),fY(y)及条件密度函数fX|Y(x|y),fY|X(y|x);并问X与Y是否独立;
假设随机变量x与y相互独立,如果X服从标准正态分布,Y的概率分布为P{Y=一1}=,P{Y=1}=,求:(Ⅰ)Z=XY的概率密度fZ(z);(Ⅱ)V=|X—Y|的概率密度fV(υ)。
对于任意两事件A和B,若P(AB)=0,则()
设A、B为两个随机事件,且BA,则下列式子正确的是()
设A,B,C为随机事件,且A发生必导致B与C最多有一个发生,则有()
设二阶常系数线性微分方程y’’+ay’+by=cex有特解y=e2x+(1+x)ex,确定常数a,b,c,并求该方程的通解.
随机试题
患者,男性,50岁。高血压病史15年.未坚持服药。2小时前因情绪激动突然意识不清,双侧瞳孔不等大。应首先考虑的是()
“他从什么地方来啊?”中的“啊”应读()。
我国公司法规定,总经理行使的主要职权有
腹部闭合性损伤的常见原因中,下列哪项是错误的
吊装方案编制的主要依据有()。
行政法规的制定部门是()。
"Opinion"isawordthatisusedcarelesslytoday.Itisusedtorefertomattersoftaste,belief,andjudgment.Thiscasualus
设函数f(x)连续,且f’(0)>0,则存在δ>0,使得()
下列反常积分发散的是
Twoofthemostcommonrumorsaboutimmigrantfamiliesarethattheydon’treallywanttobecomeAmericanandthatthey’readra
最新回复
(
0
)