首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
下列命题正确的是( ).
下列命题正确的是( ).
admin
2020-03-01
30
问题
下列命题正确的是( ).
选项
A、若向量α
1
,α
2
,…,α
n
线性无关,A为n阶非零矩阵,则Aα
1
,Aα
2
,…,Aα
n
线性无关
B、若向量α
1
,α
2
,…,α
n
线性相关,则α
1
,α
2
,…,α
n
中任一向量都可由其余向量线性表示
C、若向量α
1
,α
2
,…,α
n
线性无关,则α
1
+α
2
,α
2
+α
3
,…,α
n
+α
1
一定线性无关
D、设α
1
,α
2
,…,α
n
是n个n维向量且线性无关,A为n阶非零矩阵,且Aα
1
,Aα
2
,…,Aα
n
线性无关,则A一定可逆
答案
D
解析
(Aα
1
,Aα
2
,…,Aα
n
)=A(α
1
,α
2
,…,α
n
,因为α
1
,α
2
,…,α
n
线性无关,所以矩阵(α
1
,α
2
,…,α
n
)可逆,于是r(Aα
1
,Aα
2
,…,Aα
n
)=r(A),而Aα
1
,Aα
2
,…,Aα
n
线性无关,所以r(A)=n,即A一定可逆,选D.
转载请注明原文地址:https://kaotiyun.com/show/HCA4777K
0
考研数学二
相关试题推荐
设3阶矩阵A的特征值为λ1=1,λ2=2,λ3=3,对应的特征向量依次为ξ1=,ξ2,ξ3=,又向量β=(1)将β用ξ1,ξ2,ξ3线性表出;(2)求Anβ(n为正整数).
设由方程φ(bz-cy,cx-az,ay-bx)=0(*)确定隐函数z=z(z,y),其中φ对所有变量有连续偏导数,a,b,c为非零常数,且bφ’-aφ’2≠0,求
设f(x)可导f(x)=0,f’(0)=2,,则当x→0时,F(x)是g(x)的()
设A=(α1,α2,…,αn),B=(β1,β2,…,βn),AB=(γ1,γ2,…,γn)。记向量组、(I)α1,α2,…,αn,向量组(Ⅱ)β1,β2,…,βn,向量组(Ⅲ)γ1,γ2,…,γn。已知向量组(Ⅲ)线性相关,则有()
设f(x)可导,f(x)=0,f’(0)=2,F(x)=∫0xt2f(x3-t3)dt,则当x→0时,F(x)是g(x)的()
设y(χ)是微分方程y〞+(χ-1)y′+χ2y=eχ满足初始条件y(0)=0,y′(0)=1的解,则().
微分方程满足初始条件y(1)=1的特解是y=_____________.
设则a=___________.
试分析下列各个结论是函数z=f(x,y)在点P0(x0,y0)处可微的充分条件还是必要条件.(1)二元函数的极限f(x,y)存在;(2)二元函数z=f(x,y)在点(x0,y0)的某个邻域内有界;(3)f(x,y0)=f(x0,y0),f(x0,y)
设f(x)=∫0sinxsint2dt,g(x)=x3+x4,当x→0时,f(x)是g(x)的()。
随机试题
易发郁证的人群是
A、平卧位B、右侧卧位C、左侧卧位D、左侧半卧位E、随意卧位当孕妇发生胎膜破裂时,护士指导孕妇采取的体位是
颞下颌关节紊乱病正畸治疗的目的是
早期浸润性宫颈癌是指宫颈上皮癌变.癌组织
A.防风B.党参C.川木香D.银柴胡E.知母有“金包头”的药材是
下列关于项目的基本特点的表述,有误的是()。
必须按月结计发生额的账簿是()。
对于一种“纯公共物品”,在其总供给量保持不变的情况下,如果增加一个人对它的消费量,则其他人可消费数量的变化情况是()。
在人民法院确定的债权申报期限内,债权人未申报债权的,可以在破产财产最后分配前补充申报;此前已进行的分配,可以对其补充分配。()
CanMixofTeachers,ComputersLeadtoPupilSuccess?[A]WhenvisitorstotheCarpeDiemcharterschoolsee175studentswea
最新回复
(
0
)