首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知二次型f(x1,x2,x3)=(1-a)x12+(1-a)x22+2x32+2(1+a)x1x2,其二次型矩阵A满足r(ATA)=2. 求正交变换x=Qy,把f(x1,x2,x3)化成标准形。
已知二次型f(x1,x2,x3)=(1-a)x12+(1-a)x22+2x32+2(1+a)x1x2,其二次型矩阵A满足r(ATA)=2. 求正交变换x=Qy,把f(x1,x2,x3)化成标准形。
admin
2022-03-23
113
问题
已知二次型f(x
1
,x
2
,x
3
)=(1-a)x
1
2
+(1-a)x
2
2
+2x
3
2
+2(1+a)x
1
x
2
,其二次型矩阵A满足r(A
T
A)=2.
求正交变换x=Qy,把f(x
1
,x
2
,x
3
)化成标准形。
选项
答案
由第一问得知, 当a=0时,则有 [*]=λ(λ-2)
2
=0 得A的特征值为λ
1
=λ
2
=2,λ
3
=0 当λ
1
=λ
2
=2时,解(2E-A)x=0,得ξ
1
=(1,1,0)
T
,ξ
2
=(0,0,1)
T
当λ
3
=0时,解(0E-A)x=0,得ξ
3
=(-1,1,0)
T
由ξ
1
,ξ
2
,ξ
3
已两两正交,单位化即可,η
1
=[*](1,1,0)
T
,η
2
=(0,0,1)
T
,η
3
=[*](-1,1,0)
T
令Q=(η
1
,η
2
,η
3
),则Q为正交矩阵,作x=Qy有f(x
1
,x
2
,x
3
)=λ
1
y
1
2
+λ
2
y
2
2
+λ
3
y
3
2
=2y
1
2
+2y
2
2
.
解析
转载请注明原文地址:https://kaotiyun.com/show/HIR4777K
0
考研数学三
相关试题推荐
设向量组α1,α2,α3线性无关,则下列向量组中线性无关的是()
设A是m×n矩阵,Ax=0是非齐次线性方程组Ax=b所对应的齐次线性方程组,则下列结论正确的是()
曲线y=渐近线的条数是
(96年)设X1,X2,…,Kn是来自总体X的简单随机样本.已知EX4=ak(k=1,2,3,4),证明当n充分大时,随机变量Zn=近似服从正态分布,并指出其分布参数.
(12年)已知函数f(χ)满足方程f〞(χ)+f′(χ)-2f(χ)=0及f〞(χ)+f(χ)=2eχ.(Ⅰ)求f(χ)的表达式;(Ⅱ)求曲线y=f(χ2)∫0χf(-t2)dt的拐点.
过曲线y=(x≥0)上的一点A作切线,使该切线与曲线及x轴所围成的平面区域的面积为,所围区域绕x轴旋转一周而成的体积为.
设二次型f=2x12+2x22+ax32+2x1x2+2bx1x3+2x2x3经过正交变换X=QY,化为标准形f=y12+y22+4y32,求参数a,b及正交矩阵Q.
设f(x)为连续函数,
某厂家生产的一种产品同时在两个市场上销售,售价分别为P1,P2,销售量分别为q1,q2,需求函数分别为q1=24—0.2p1,q2=10-0.05p2,总成本函数为C=35+40(q1+q2),问厂家如何确定两个市场的销售价格,能使其获得总利润最大?最大利
随机试题
马克思认为,一定时期流通中的货币需要量取决于()。
上市公司通过普通股增发的方式进行股权再融资,会使该公司()。
对酿造食醋进行感官检验时,取30mL试样于50mL烧杯中,观察应无悬浮物,无“醋鳗”和“醋虱”。
A.Wearewillingtoenterintobusinessrelationshipwithyourcompanyonthebasisofequalityandmutualbenefit.B.Wehave
A.低张性缺氧B.喘息性缺氧C.循环性缺氧D.组织性缺氧E.血液性缺氧休克,心力衰竭、栓塞等患者的缺氧类型属于
任何节奏流水施工组织方式,其计划工期( )。
下列语句中,没有语病的一句为:
把下面的六个图形分成两类,使每一类图形都有各自的共同特征或规律,分类正确的一项是:
已知方程组的一个基础解系为(b11,b12,…,b1,2n)T,(b21,b22,…,b2,2n)T,…,(bn1,bn2,…,bn,2n)T。试写出线性方程组的通解,并说明理由。
下列关于线性链表的叙述中,正确的是( )。
最新回复
(
0
)