首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知齐次线性方程组 (Ⅰ)和(Ⅱ) 同解,求a,b,c的值。
已知齐次线性方程组 (Ⅰ)和(Ⅱ) 同解,求a,b,c的值。
admin
2018-01-26
77
问题
已知齐次线性方程组
(Ⅰ)
和(Ⅱ)
同解,求a,b,c的值。
选项
答案
因为方程组(Ⅱ)中方程个数小于未知数个数,(Ⅱ)必有无穷多解,所以(Ⅰ)必有无穷多解,因此(Ⅰ)的系数行列式必为0,即有 [*] 对(Ⅰ)的系数矩阵作初等行变换,有[*],于是求出方程组(Ⅰ)的通解是k(-1,-1,1)
T
。 由题意知,(-1,-1,1)
T
亦是方程组(Ⅱ)的解,故有 [*] 解得b=1,c=2或b=0,c=1。 当b=0,c=1时,方程组(Ⅱ)为 [*] 因其系数矩阵的秩为1,则方程组(Ⅰ)与方程组(Ⅱ)的系数矩阵的秩不相等,从而(Ⅰ)与(Ⅱ)有不同的解,故b=0,c=1应舍去。 经验证,当a=2,b=1,c=2时,(Ⅰ)与(Ⅱ)同解。
解析
转载请注明原文地址:https://kaotiyun.com/show/HSr4777K
0
考研数学一
相关试题推荐
一个罐子里装有黑球和白球,黑、白球数之比为a:1.现有放回的一个接一个地抽球,直至抽到黑球为止,记X为所抽到的白球个数.这样做了n次以后,获得一组样本:X1,X2,…,Xn.基于此,求未知参数a的矩估计和最大似然估计.
从装有1个白球、2个黑球的罐子里有放回地取球,记这样连续取5次得样本X1,X2,X3,X4,X5.记Y=X1,X2,…,X5,求:(1)y的分布律,E(y),E(Y2);(2),E(S2)(其中,S2分别为样本X1,X
设X和Y相互独立都服从0—1分布:P{X=1)=P{Y=1)=0.6.试证明:U=X+Y,V=X—Y不相关,但是不独立.
设p(x),g(x)与f(x)均为连续函数,f(x)≠0.设y1(x),y2(x)与y3(x)是二阶线性非齐次方程y’’+p(x)y’+q(x)y=f(x)①的3个解,且则式①的通解为__________.
证明:若A为m×n矩阵,B为n×p矩阵,则有r(AB)≥r(A)+r(B)一n.特别地,当AB=O时,有r(A)+r(B)≤n.
设有两个非零矩阵A=[a1,a2,…,an]T,B=[b1,b2,…,bn]T.求矩阵ABT的秩r(ABT);
方程组的通解是__________.
设A为m×N实矩阵,e为N阶单位矩阵.已知矩阵b=λE+ATA,试证:当λ>0时,矩阵B为正定矩阵.
已知A是n阶矩阵,α1,α2……αs是n维线性无关向量组,若Aα1,Aα2……Aαs线性相关.证明:A不可逆.
求下面线性方程组的解空间的维数:并问ξ1=[9,一1,2,一1,1]T是否属于该解空间.
随机试题
阅读下文,回答问题。温暖的村庄安庆村庄真是一个固执的地方
治疗痿证属肝肾亏损者,宜选()(2008年第161题)
下列哪一项关于免疫缺陷病临床特征的叙述是错误的
儿童患腹股沟疝,首选的术式是
根据《民法通则》的规定,下列事项诉讼时效期间为2年的是()。
课堂提问中,有诸如“请用自己的话解释”“有何根据”“何以见得”等关键词语的题目一般属于()。
研究者对大熊猫肠道内的微生物进行分析后发现,虽然原本食肉的熊猫为了适应食物稀缺的环境而在距今240万到200万年转为以竹子为食,并为此进化出了强壮的颌骨,但它们却没有进化出更长的消化道或分泌特定消化酶的能力,从而无法有效地分解竹纤维素。最适合做这段文字标题
税务机关依照法定的税种、税率对某企业征税,这一行为是()。
为了减少CRT显示器的闪烁现象,可采用的方法有(14)。
Asmallnumberoffirmshaveceasedtrading.
最新回复
(
0
)