首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
考虑一元函数f(x)的下列4条性质:①f(x)在[a,b]上连续.②f(x)在[a,b]上可积.③f(x)在[a,b]上可导.④f(x)在[a,b]上存在原函数.以P→Q表示由性质P可推出性质Q,则有( )
考虑一元函数f(x)的下列4条性质:①f(x)在[a,b]上连续.②f(x)在[a,b]上可积.③f(x)在[a,b]上可导.④f(x)在[a,b]上存在原函数.以P→Q表示由性质P可推出性质Q,则有( )
admin
2014-04-16
64
问题
考虑一元函数f(x)的下列4条性质:①f(x)在[a,b]上连续.②f(x)在[a,b]上可积.③f(x)在[a,b]上可导.④f(x)在[a,b]上存在原函数.以P→Q表示由性质P可推出性质Q,则有( )
选项
A、①→②→③.
B、③→①→④.
C、①→②→④.
D、④→③→①.
答案
B
解析
因可导必连续,连续函数必存在原函数,故B正确.A是不正确的.虽然由①可推出②.但由②(可积)推不出③(可导).例如f(x)=|x|在[一1,1]上可积,且
在x=0处不可导.C是不正确的.由②(可积)推不出④(存在原函数)。例如
[1.1]上可积,则
但f(x)在[一1,1]上不存在原函数.因为如果存在原函数F(x).那么只能是F(x)=|x|+C的形式,而此函数在x=0处不可导,在区间[一1,1]上它没有做原函数的“资格”.(I))是不正确的,因为由④(存在原函数)推不出①(函数连续).反例如下:
它存在原函数
可以验证F
’
(x)=f(x),但f(x)在x=0处并不连续,即存在原函数可以不连续.
转载请注明原文地址:https://kaotiyun.com/show/HX34777K
0
考研数学二
相关试题推荐
(1998年)差分方程2yt+1+10yt一5t=0的通解为________。
(2000年)设其中f,g均可微,则=_____。
(98年)齐次线性方程组的系数矩阵记为A.若存在3阶矩阵B≠O使得AB=O,则【】
设z=arctan[xy+sin(x+y)],则=_________
(2004年)设函数f(u,v)由关系式f[xg(y),y]=x+g(y)确定,其中函数g(y)可微,且g(y)≠0,则=_______。
设总体X的概率密度为f(x;θ)=其中θ是未知参数,X1,X2…,Xn为来自总体X的简单随机样本.若,则c=___________.
(89年)设α1=(1,1,1),α2=(1,2,3),α3=(1,3,t)(1)问当t为何值时,向量组α1,α2,α3线性无关?(2)问当t为何值时,向量组α1,α2,α3线性相关?(3)当向量组α1,α2,α3线性相关时,
设y=y(x)由确定,则曲线y=y(x)在x=0对应的点处的切线为________。
设φ1(x),φ1(x),φ3(x)是微分方程+P(x)y’+Q(x)y=f(x)的三个线性无关的特解,则该方程的通解为().
已知微分方程作变换确定函数w=w(u,v),求经过变换后原方程化成的关于w,u,v的微分方程的形式.
随机试题
“导航窗格”选项位于Word2010的_________功能区中。
出现()的情况时,施工单位延期申请能够成立并获得监理工程师批准。
年终结账时,应住“本年累计”行下划()。
对外展出、援助,交换和赠送的出境植物,植物产品,无须向检验检疫机构报检。( )
下列各项中,通常被认为是企业发放现金股利这种分配形式的优点的有()。
下列各项中,应在资产负债表中“其他应收款”项目填列的有()。
甲公司2014年3月1日开始自行开发专利技术,在研究阶段发生材料费用10万元,开发阶段支付开发人员工资100万元,福利费20万元,支付租金30万元。开发阶段的支出满足资本化条件。2014年3月16日,甲公司自行开发成功专利技术,并依法申请了专利,支付注册费
()是日本帝国主义全面侵华的开始,也是中华民族进行全面抗战的起点。
设A为n阶实矩阵,AT是A的转置矩阵,则对于线性方程组(Ⅰ):Ax=0和(Ⅱ):ATAx=0,必有()
Itisnotpolitetoarriveatadinnerpartymorethan15to20minuteslate.Thehostorhostessusuallywaitsforallthegues
最新回复
(
0
)