首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
是否存在平面二次曲线y=ax2+bx+c,其图形经过以下各点:(0,1),(—2,2),(1,3),(2,1)。
是否存在平面二次曲线y=ax2+bx+c,其图形经过以下各点:(0,1),(—2,2),(1,3),(2,1)。
admin
2019-03-23
47
问题
是否存在平面二次曲线y=ax
2
+bx+c,其图形经过以下各点:(0,1),(—2,2),(1,3),(2,1)。
选项
答案
二次曲线y=ax
2
+bx+c经过这四个点,则将以上各点坐标值代入曲线方程并组成方程组,于是该问题转化为对该方程组的求解。即 [*] 将其增广矩阵经初等行变换化为阶梯形 [*] 由阶梯形矩阵可知增广矩阵的秩为4,而系数矩阵的秩为3,故方程组无解。所以,不存在经过所给四个点的平面二次曲线。
解析
转载请注明原文地址:https://kaotiyun.com/show/HXV4777K
0
考研数学二
相关试题推荐
设A=αβT,其中α和β都是n维列向量,证明对正整数k,Ak=(βTα)k-1A=(tr(A))k-1A.(tr(A)是A的对角线上元素之和,称为A的迹数.)
设α,β都是n维非零列向量,A=αβT.证明:A相似于对角矩阵βTα≠0.
下列矩阵中不能相似对角化的是
设α1,α2,…,αs,β1,β2,…,βt线性无关,其中α1,α2,…,αs是齐次方程组AX=0的基础解系.证明Aβ1,Aβ2,…,Aβt线性无关.
设(Ⅰ)和(Ⅱ)是两个四元齐次线性方程组,(Ⅰ)为(Ⅱ)有一个基础解系(0,1,1,0)T,(-1,2,2,1)T.求(Ⅰ)和(Ⅱ)的全部公共解.
设线性方程组为(1)讨论a1,a2,a3,a4取值对解的情况的影响.(2)设a1=a3=k,a2=a4=-k(k≠0),并且(-1,1,1)T和(1,1,-1)T都是解,求此方程组的通解.
设函数f(x)在[0,3]上连续,在(0,3)内存在二阶导数,且2f(0)=∫02f(x)dx=f(2)+f(3)。证明存在ξ∈(0,3),使f’’(ξ)=0。
记平面区域D={(x,y)|x|+|y|≤1),计算如下二重积分:(1)其中f(t)为定义在(一∞,+∞)上的连续正值函数,常数a>0,b>0;(2),常数λ>0.
设f(x,y)在点O(0,0)的某邻域U内连续,且.试讨论f(0,0)是否为f(x,y)的极值?是极大值还是极小值?
随机试题
多尿期的标志是()
共同参与型护患关系模式的特点包括()。
上海甲公司作为卖方和澳门乙公司订立了一项钢材购销合同,约定有关合同的争议在中国内地仲裁。乙公司在内地和澳门均有营业机构。双方发生争议后,仲裁庭裁决乙公司对甲公司进行赔偿。乙公司未在规定的期限内履行仲裁裁决。关于甲公司对此采取的做法,下列哪些选项是正确的?
我国21世纪初可持续发展的基本原则有()。
某施工工地脚手架垮塌,造成10人重伤,根据《生产安全事故报告和调查处理条例》规定,该事故的等级属于()。
茶叶含有咖啡因,故容易失眠的人睡前不宜饮用浓茶。()
在当前社会,人与人之间的激烈竞争在所难免,但不少人因为得失心较重,做事时不惜违反公德伦理和规则秩序,最后不仅很难占到便宜,有时反而会害了自己。随着制度越来越健全,太重得失而逾规的行为只能是搬起石头砸自己的脚。比如,运动员们每日辛苦训练就是为了在比赛中获得奖
有以下计算公式若程序前面已经在命令行中包含math.h文件,不能够正确计算上述公式的程序段是
It’sself-evidentthatnoonewouldhavetimetoknoweverythinggoingonintheworld.
Peoplehavewonderedforalongtimehowtheirpersonalitiesandbehaviorsareformed.It’snoteasytoexplainwhyonepersoni
最新回复
(
0
)