首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知3阶矩阵A的第1行是(a,b,c),矩阵B=(k为常数),且AB=O,求线性方程组Aχ=0的通解.
已知3阶矩阵A的第1行是(a,b,c),矩阵B=(k为常数),且AB=O,求线性方程组Aχ=0的通解.
admin
2017-06-26
83
问题
已知3阶矩阵A的第1行是(a,b,c),矩阵B=
(k为常数),且AB=O,求线性方程组Aχ=0的通解.
选项
答案
由于AB=O,知B的每一列都是方程组Aχ=0的解,因此Aχ=0至少有r(B)个线性无关解,所以Aχ=0的基础解系至少含r(B)个向量,即3-r(A)≥r(B),或r(A)≤3-r(B).又由a,b,c不全为零,可知r(A)≥1. 当k≠9时,r(B)=2,有1≤r(A)≤1,于是r(A)=1; 当k=0时,r(B)=1,有1≤r(A)≤2,于是r(A)=1或r(A)=2. 当k≠9时,由AB=O可得 [*] 由于η
1
=(1,2,3)
T
,η
2
=(3,6,k)
T
线性无关,故η
1
,η
2
为Aχ=0的一个基础解系,于是Aχ=0的通解为 χ=c
1
η
1
+c
2
η
2
,其中c
1
,c
2
为任意常数 当k=9时,分别就r(A)=2和r(A)=1讨论如下: 如果r(A)=2,则Aχ=0的基础解系由一个向量构成. 又因为[*]=0,所以Aχ=0的通解为 χ=c
1
(1,2,3)
T
,其中c
1
为任意常数. 如果r(A)=1,则Aχ=0的基础解系由两个向量构成.又因为A的第一行为(a,b,c)且a,b,c不全为零, 所以Aχ=0等价于aχ
1
+bχ
2
+cχ
3
=0.不妨设a≠0,则η
1
=(-b,a,0)
T
,η
2
=(-c,0,a)
T
是Aχ=0的两个线性无关的解,从而η
1
,η
2
可作为Aχ=0的基础解系,故Aχ=0的通解为 χ=c
1
η
1
+c
2
η
2
,其中c
1
,c
2
为任意常数.
解析
转载请注明原文地址:https://kaotiyun.com/show/HjH4777K
0
考研数学三
相关试题推荐
向量组a1,a2,…,as线性无关的充分条件是().
设函数f(x)对任意x均满足等式f(1+x)=af(*),且f’(0)=b,其中a,b为非零常数,则().
设有三维列向量(Ⅰ)β可由a1,a2,a3,线性表示,且表达式唯一;(Ⅱ)β可由a1,a2,a3线性表示,且表达式不唯一;(Ⅲ)β不能由a1,a2,a3线性表示.
设n维向量a=(a,0,…,0,a)T,a>0,E为n阶单位矩阵,矩阵A=E-aaT,B=,其中A的逆矩阵为B,则a=_________.
微分方程的通解是_________.
曲线sin(xy)+ln(y-x)=x在点(0,1)处的切线方程为__________.
在经济学中,称函数Q(x)=A[δK-x+(1-δ)L-x]-(1/x)为固定替代弹性生产函数,而称函数生产函数(简称C-D生产函数).试证明:当x→0时,固定替代弹性生产函数变为C-D生产函数,即有
设a1,a2,…,as均为n维列向量,A是m×n矩阵,则下列选项正确的是().
方程yy’’=1+y’2满足初始条件y(0)=1,y’(0)=0的通解为__________.
已知对于n阶方阵A,存在自然数k,使得Ak=0,试证明矩阵E-A可逆,并求出逆矩阵的表达式(E为n阶单位矩阵).
随机试题
肱骨外科颈骨折可损伤
周期性瘫痪临床上不应有的表现为
A、 B、 C、 D、 E、 C十二经脉的交接规律:相为表里的阴经与阳经在四肢末端交接;同名手足阳经在头面交接;足手阴经在胸部交接。
“松涛声,海涛声,声声相应。天上月,水中月,月月齐明”赞美的是四川著名的天气景观()。
李大爷今年78岁,是革命伤残军人,没有子女,一直以来都是老伴照顾他的生活。老伴的心脏病很严重,随着年龄的增长,经常会犯病,而每次犯病后,李大爷不但要自己料理生活,还要照顾生病的老伴,这对于残疾的李大爷来说是一项挑战。李大爷为了不给社区添麻烦,也没有向社区寻
享受春雨①也许是刚经历了冬天太多的郁闷和压抑,也许是寒风、残雪在记忆的底片上留下太多的沧桑与悲凉,万物掐灭生命的色彩与声音,孤独地萧条着沉默着。一夜微风,唤醒早春三月的晨曦,也吹来了北方第一场春雨。山川、河流、乡村、房屋、树林、花草、庄稼、庄稼人
党的政治路线要紧紧围绕党的建设来制定。()
[*]
以下关于IPv6的论述中,正确的是___________。
Self-Reliance,byRalphWaldoEmerson,hasinfluencedthewayIviewtheworldandmyself.Thisworkhashadaprofoundeffecto
最新回复
(
0
)