首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知3阶矩阵A的第1行是(a,b,c),矩阵B=(k为常数),且AB=O,求线性方程组Aχ=0的通解.
已知3阶矩阵A的第1行是(a,b,c),矩阵B=(k为常数),且AB=O,求线性方程组Aχ=0的通解.
admin
2017-06-26
87
问题
已知3阶矩阵A的第1行是(a,b,c),矩阵B=
(k为常数),且AB=O,求线性方程组Aχ=0的通解.
选项
答案
由于AB=O,知B的每一列都是方程组Aχ=0的解,因此Aχ=0至少有r(B)个线性无关解,所以Aχ=0的基础解系至少含r(B)个向量,即3-r(A)≥r(B),或r(A)≤3-r(B).又由a,b,c不全为零,可知r(A)≥1. 当k≠9时,r(B)=2,有1≤r(A)≤1,于是r(A)=1; 当k=0时,r(B)=1,有1≤r(A)≤2,于是r(A)=1或r(A)=2. 当k≠9时,由AB=O可得 [*] 由于η
1
=(1,2,3)
T
,η
2
=(3,6,k)
T
线性无关,故η
1
,η
2
为Aχ=0的一个基础解系,于是Aχ=0的通解为 χ=c
1
η
1
+c
2
η
2
,其中c
1
,c
2
为任意常数 当k=9时,分别就r(A)=2和r(A)=1讨论如下: 如果r(A)=2,则Aχ=0的基础解系由一个向量构成. 又因为[*]=0,所以Aχ=0的通解为 χ=c
1
(1,2,3)
T
,其中c
1
为任意常数. 如果r(A)=1,则Aχ=0的基础解系由两个向量构成.又因为A的第一行为(a,b,c)且a,b,c不全为零, 所以Aχ=0等价于aχ
1
+bχ
2
+cχ
3
=0.不妨设a≠0,则η
1
=(-b,a,0)
T
,η
2
=(-c,0,a)
T
是Aχ=0的两个线性无关的解,从而η
1
,η
2
可作为Aχ=0的基础解系,故Aχ=0的通解为 χ=c
1
η
1
+c
2
η
2
,其中c
1
,c
2
为任意常数.
解析
转载请注明原文地址:https://kaotiyun.com/show/HjH4777K
0
考研数学三
相关试题推荐
设函数f(x)对任意x均满足等式f(1+x)=af(*),且f’(0)=b,其中a,b为非零常数,则().
设总体X的概率密度为p(x,λ)=其中A>0为未知参数,a>0是已知常数,试根据来自总体X的简单随机样本X1,X2,…,X,求λ的最大似然估计量
设n维向量a=(a,0,…,0,a)T,a>0,E为n阶单位矩阵,矩阵A=E-aaT,B=,其中A的逆矩阵为B,则a=_________.
微分方程的通解是_________.
设A,B为n阶矩阵,且A与B相似,E为n阶单位矩阵,则().
设X1,X2,…,Xn是总体为N(μ,σ2)的简单随机样本,记(Ⅱ)证明T是μ2的无偏估计量;(Ⅱ)当μ=0,σ=l时,求D(T).
设三阶实对称矩阵A的各行元素之和均为3,向量a1=(-1,2,-1)T=(0,-1,1)T是线性方程组Ax=0的两个解;(Ⅰ)求A的特征值与特征向量;(Ⅱ)求正交矩阵Q和对角矩阵A,使得QTAQ=L;(Ⅲ)求A及(A-(3/2)E)6,其中E为三阶
设三阶矩阵A=,三维列向量a=(a,1,1)T.已知Aa与a线性相关,则a_________.
设A是n阶矩阵,下列不是命题“0是矩阵A的特征值”的充分必要条件的是().
随机试题
What________youdothisSundayifit________?
自唐代以来,文士茶俗开始兴起。文人雅士是茶文化最重要的推动者。
《外套》表达的主题思想是()
马克思主义公开问世的标志性著作是()
A.清胃泻热,凉血止衄B.清胃泻火,化瘀止血C.清胃泻火,凉血止血D.清泻胃热,凉血化瘀(2008年第105,106题)吐血属于胃热壅盛证,其治法是()
盖亚假说认为地球生命体与非生命体形成了一个可相互作用的复杂系统。该假说又分为强盖亚假说和弱盖亚假说。其中弱盖亚假说认为地球上的各种生物有效地调节着大气的温度和化学构成,在生物体影响生物环境的同时,环境又反过来影响生物进化的过程。强盖亚假说更进一步认为地球是
简述认知行为疗法对神经性贪食症的治疗。
结合材料回答问题:材料1现在,大家都在讨论中国梦,我以为,实现中华民族伟大复兴,就是中华民族近代以来最伟大的梦想。这个梦想,凝聚了几代中国人的夙愿,体现了中华民族和中国人民的整体利益,是每一个中华儿女的共同期盼。历史告诉我们,每个人的前
在下图所示的嵌入式最小硬件系统中,①和②分别为【59】_______电路和【60】_______电路(顺序无关)。
【B1】【B7】
最新回复
(
0
)