首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知3阶矩阵A的第1行是(a,b,c),矩阵B=(k为常数),且AB=O,求线性方程组Aχ=0的通解.
已知3阶矩阵A的第1行是(a,b,c),矩阵B=(k为常数),且AB=O,求线性方程组Aχ=0的通解.
admin
2017-06-26
43
问题
已知3阶矩阵A的第1行是(a,b,c),矩阵B=
(k为常数),且AB=O,求线性方程组Aχ=0的通解.
选项
答案
由于AB=O,知B的每一列都是方程组Aχ=0的解,因此Aχ=0至少有r(B)个线性无关解,所以Aχ=0的基础解系至少含r(B)个向量,即3-r(A)≥r(B),或r(A)≤3-r(B).又由a,b,c不全为零,可知r(A)≥1. 当k≠9时,r(B)=2,有1≤r(A)≤1,于是r(A)=1; 当k=0时,r(B)=1,有1≤r(A)≤2,于是r(A)=1或r(A)=2. 当k≠9时,由AB=O可得 [*] 由于η
1
=(1,2,3)
T
,η
2
=(3,6,k)
T
线性无关,故η
1
,η
2
为Aχ=0的一个基础解系,于是Aχ=0的通解为 χ=c
1
η
1
+c
2
η
2
,其中c
1
,c
2
为任意常数 当k=9时,分别就r(A)=2和r(A)=1讨论如下: 如果r(A)=2,则Aχ=0的基础解系由一个向量构成. 又因为[*]=0,所以Aχ=0的通解为 χ=c
1
(1,2,3)
T
,其中c
1
为任意常数. 如果r(A)=1,则Aχ=0的基础解系由两个向量构成.又因为A的第一行为(a,b,c)且a,b,c不全为零, 所以Aχ=0等价于aχ
1
+bχ
2
+cχ
3
=0.不妨设a≠0,则η
1
=(-b,a,0)
T
,η
2
=(-c,0,a)
T
是Aχ=0的两个线性无关的解,从而η
1
,η
2
可作为Aχ=0的基础解系,故Aχ=0的通解为 χ=c
1
η
1
+c
2
η
2
,其中c
1
,c
2
为任意常数.
解析
转载请注明原文地址:https://kaotiyun.com/show/HjH4777K
0
考研数学三
相关试题推荐
设有三维列向量(Ⅰ)β可由a1,a2,a3,线性表示,且表达式唯一;(Ⅱ)β可由a1,a2,a3线性表示,且表达式不唯一;(Ⅲ)β不能由a1,a2,a3线性表示.
向量组a1,a2,…,am线性无关的充分必要条件是().
设n阶矩阵A与B等价,则必有().
设X1,X2,…,Xn是来自正态总体X的简单随机样本,Y1=1/6(X1+…+X6),Y2=1/3(X7+X8+X9),S2=(X1-Y2)2,Z=,证明统计量Z服从自由度为2的t分布.
设三阶实对称矩阵A的各行元素之和均为3,向量a1=(-1,2,-1)T=(0,-1,1)T是线性方程组Ax=0的两个解;(Ⅰ)求A的特征值与特征向量;(Ⅱ)求正交矩阵Q和对角矩阵A,使得QTAQ=L;(Ⅲ)求A及(A-(3/2)E)6,其中E为三阶
设A是m×n矩阵,C是n阶可逆矩阵,矩阵A的秩为r,矩阵B=AC的秩为r1,则().
设A是n阶矩阵,下列不是命题“0是矩阵A的特征值”的充分必要条件的是().
两台同样自动记录仪,每台无故障工作的时间服从参数为5的指数分布;首先开动其中一台,当其发生故障时,停用而另一台自动开动.试求两台记录仪无故障工作的总时间T的概率密度f(t)、数学期望和方差.
设a1,a2,…,as均为n维列向量,A是m×n矩阵,则下列选项正确的是().
已知对于n阶方阵A,存在自然数k,使得Ak=0,试证明矩阵E-A可逆,并求出逆矩阵的表达式(E为n阶单位矩阵).
随机试题
Theappealofadvertisingtobuyingmotivescanhavebothnegativeandpositiveeffects.Consumersmaybeconvincedtobuyapro
妊娠足月时,下列胎动次数哪项是正确的:
关于线粒体肌病的说法哪项不正确
外科病人最易发生的水钠代谢紊乱是
患者男,28岁。因皮肤黏膜出血来诊。判断为“再生障碍性贫血”入院,现患者有高热并且时有抽搐。此时最适宜最快速的降温措施是
空调系统不控制房间的下列哪个参数?
桥头跳车正确的防治措施包括()。
证券公司因包销购入售后剩余股票而持有()以上股份的,卖出该股票时不受规定的六个月时间的限制。
银行业从业人员不包括()。
Thesuperstarturneddowninterviewrequests,sayinghepreferredtokeepalow______.
最新回复
(
0
)