首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设某班车起点上车人数X服从参数为λ(λ>0)的泊松分布,如果每位乘客在中途下车的概率为P(0<p<1),并且他们在中途下车与否是相互独立的.用Y表示在中途下车的人数,求(1)在发车时有n个乘客的条件下,中途有m个人下车的概率;(2)(X,Y)的联合概率分布
设某班车起点上车人数X服从参数为λ(λ>0)的泊松分布,如果每位乘客在中途下车的概率为P(0<p<1),并且他们在中途下车与否是相互独立的.用Y表示在中途下车的人数,求(1)在发车时有n个乘客的条件下,中途有m个人下车的概率;(2)(X,Y)的联合概率分布
admin
2016-01-11
65
问题
设某班车起点上车人数X服从参数为λ(λ>0)的泊松分布,如果每位乘客在中途下车的概率为P(0<p<1),并且他们在中途下车与否是相互独立的.用Y表示在中途下车的人数,求(1)在发车时有n个乘客的条件下,中途有m个人下车的概率;(2)(X,Y)的联合概率分布.
选项
答案
(1)设A表示事件“发车时有n个乘客上车”,B表示“中途有m个人下车”,则P(B|A)=P{Y=m|X=n}. 由二项分布,有P(B|A)=C
n
m
p
m
(1-p)
n-m
,0≤m≤n,n=0,1,2,…. (2)由乘法公式,有P{X=n,Y=m}=P(AB)=P(A)P(B|A). 又由于x服从参数为A的泊松分布,因此P{X=n}=[*], 从而(X,Y)的联合概率分布为 P{X=n,Y=m}=[*],其中0≤m≤n,n=0,1,2,….
解析
转载请注明原文地址:https://kaotiyun.com/show/Hl34777K
0
考研数学二
相关试题推荐
设Aij为A中aij(i,j=1,2,3)的代数余子式,二次型的矩阵为B.求可逆矩阵P,使得PTAP=B.
设x1>0,xn+1=ln(1+xn),n=1,2,….证明xn存在,并求此极限;
已知一抛物线过Ox轴上两点A(1,0)、B(3,0),记0≤x≤1时,抛物线与Ox轴、Oy轴围成的平面图形为S1,在1≤x≤3上抛物线与Ox轴围成的平面图形为S2.求S1与S2绕Oy轴旋转一周所产生的两个旋转体的体积之比.
设函数f(x)在[a,b]上连续,且f(x)>0,则方程∫axf(t)dt+∫bx=0在(a,b)内的实根个数为().
设是取自同一正态总体N(μ,σ2)的两个相互独立且容量相同的简单随机样本的两个样本均值,则满足≤0.05的最小样本容量n=
设A是n阶实对称矩阵,P是n阶可逆矩阵,已知n维列向量α是A的属于特征值λ的特征向量,则矩阵P-1AP属于特征值λ的特征向量是().
设D是曲线y=x4-x3的凸弧段部分与x轴形成的曲边三角形,则=________。
设D是以点O(0,0),A(1,2),B(2,1)为顶点的三角形区域,则xdxdy=________.
设函数f(x,y)在点(0,0)处连续,且(1)求,并讨论它们在点(0,0)处是否可微,若可微求出df(x,y)|(0,0);(2)证明:f(x,y)在点(0,0)处取得极小值.
试证明:若f(x)在[a,b]上存在二阶导数,且f’(a)=f’(b)=0,则存在ξ∈(a,b),使得
随机试题
下面各项中属于发散思维的表现形式的有()
A.1000~2000mLB.1700~2500mLC.3500~4000mLD.5500~6000mLE.30000~35000mL50kg体重的人,其体液量约为
男婴,10个月,对蛋白质需要量是3.5g/kg,而成人则为1.0/kg,其相差如此之大是因为
机械排风系统的进风口,其下缘距离室内地面的高度应小于等于()m。
证券公司自营业务的内部控制中重点防范的风险不包括( )。
有形席位的申报方式可以缩短申报时间与成交回报时间,同时也可以降低申报时差。()
世界人均淡水水量约8300立方米,但每年有2/3以洪水形式流失,其余1/3成为饮用水和灌溉用水。由于工业化和人类用水量的增加,目前世界用水量与1990年相比增加了近10倍。可见未来的淡水不足足以构成经济发展和粮食生产的制约因素之一。这段话主要支持了这样一
AlfredNobel,aSwedishinventorcontributedmostofhisvastfortuneinatrustasafundfromwhichannualprizescouldbeawa
有如下程序#includeusingnamespacestd;classBase{protected:Base(){tout
Whichstatementcanbestfittoeachofthefollowingsituation?ChooseFIVEanswersfromtheboxandwritethecorrectletter,
最新回复
(
0
)