首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A为实矩阵,证明r(ATA)=r(A).
设A为实矩阵,证明r(ATA)=r(A).
admin
2018-11-20
76
问题
设A为实矩阵,证明r(A
T
A)=r(A).
选项
答案
通过证明A
T
AX=0和AX=0同解,来得到结论. A
T
AX=0和AX=0同解,即对于实向量η,A
T
Aη=0[*]Aη=0. “[*]”显然. “[*]”A
T
Aη=0[*]η
T
A
T
Aη=0,从而(Aη,Aη)=η
T
A
T
Aη=0,得Aη=0.
解析
转载请注明原文地址:https://kaotiyun.com/show/HuW4777K
0
考研数学三
相关试题推荐
设f(x)在[a,b]上连续,在(a,b)内可导,且f(a)=f(b)=0,f(x)dx=0.证明:存在ξi∈(a,b)(i=1,2),且ξ1≠ξ2,使得f’(ξi)+f(ξi)=0(i=1,2);
设f(x)在[a,b]上连续,在(a,b)内可导,且f’+(a)f’一(b)<0.证明:存在ξ∈(a,b),使得f’(ξ)=0.
求∫02|x一λ|dx(λ不为常数).
设有2个四元齐次线性方程组:方程组①和(Ⅱ)是否有非零公共解?若有,求出所有的非零公共解?若没有,则说明理由.
设线性方程组有非零解,则组成基础解系的线性无关的解向量有().
设试验成功的概率为,失败的概率为,独立重复试验直到成功为止,试求试验次数的数学期望.
已知f(x)是微分方程xf’(x)一f(x)=满足初始条件f(1)=0的特解,则∫01f(x)dx=________.
某流水线上每个产品不合格的概率为p(0<p<1),各产品合格与否相对独立,当出现1个不合格产品时即停机检修。设开机后第1次停机时已生产了的产品个数为X,求X的数学期望E(X)和方差D(X)。
假设二维随机变量(X1,X2)的协方差矩阵为其中σij=Cov(Xi,Xj)(i,j=1,2),如果X1与X2的相关系数为ρ,那么行列式|∑|=0的充分必要条件是()
随机试题
契阔谈宴,心念旧恩。契:阔:旧恩:
用ELlSA双抗体夹心法检测抗原A时,固相载体的包被物是
进行正常的短期投资活动所需要的现金属于交易性需求所需现金。()
甲、乙两个公司共有()人下列叙述正确的是()
政府机构与其他国家机构的关系是协作配合、相互制约的关系。()
A、 B、 C、 D、 C
设变量均已正确定义,若要通过scanf("%d%c%d%c",&a1,&c1,&a2,&c2);语句为变量a1和a2赋数值10和20,为变量c1和c2赋字符X和Y。以下所示的输入形式中正确的是(注:□代表空格字符)
下列叙述中正确的是
Theexaminergivesyoutwophotographsandasksyoutotalkaboutthemforoneminute.Theexaminerthenasksyourpartneraque
Whichofthefollowingstatementsistrue?Theword"observances"inthelastparagraphis______.
最新回复
(
0
)