首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A=。 (Ⅰ)求满足Aξ2=ξ1,A2ξ3=ξ1的所有向量ξ2,ξ3; (Ⅱ)对(Ⅰ)中的任意向量ξ2,ξ3,证明ξ1,ξ2,ξ3线性无关。
设A=。 (Ⅰ)求满足Aξ2=ξ1,A2ξ3=ξ1的所有向量ξ2,ξ3; (Ⅱ)对(Ⅰ)中的任意向量ξ2,ξ3,证明ξ1,ξ2,ξ3线性无关。
admin
2021-01-25
68
问题
设A=
。
(Ⅰ)求满足Aξ
2
=ξ
1
,A
2
ξ
3
=ξ
1
的所有向量ξ
2
,ξ
3
;
(Ⅱ)对(Ⅰ)中的任意向量ξ
2
,ξ
3
,证明ξ
1
,ξ
2
,ξ
3
线性无关。
选项
答案
(Ⅰ)解方程Aξ
2
=ξ
1
, [*] r(A)=2,故有一个自由变量,令x
3
=2,由Ax=0解得,x
2
=一1,x
1
=1。 求特解,令x
1
=x
2
=0,得x
3
=1。故ξ
2
=(0,0,1)
T
+k
1
(1,一1,2)
T
,其中k
1
为任意常数。 解方程Aξ
3
=ξ
1
, [*] 故有两个自由变量,令x
2
=1,x
3
=0,由A
2
x=0得x
1
=一1。 令x
2
=0,x
3
=1,由A
2
x=0得x
1
=0。 且特解η
2
=[*],故 ξ
3
=k
2
[*],其中k
2
,k
3
为任意常数。 (Ⅱ)方法一:由于 |ξ
1
,ξ
2
,ξ
3
|=[*]≠0, 故ξ
1
,ξ
2
,ξ
3
线性无关。 方法二:由题设可得Aξ
1
=0。设存在数k
1
,k
2
,k
3
,使得 k
1
ξ
1
+k
2
ξ
2
+k
3
ξ
3
=0, ① 在等式①的两端左乘A,得k
2
Aξ
2
+k
3
Aξ
3
=0,即 k
2
ξ
1
+k
3
Aξ
3
=0, ② 在等式②的两端再左乘A,得k
3
Aξ
3
=0,即k
3
ξ
1
=0。 由于ξ
1
≠0,所以只能是k
3
=0,代入②式,得k
2
ξ
1
=0,故k
2
=0。将k
2
=k
3
=0代人①式,可得k
1
=0,从而ξ
1
,ξ
2
,ξ
3
线性无关。
解析
转载请注明原文地址:https://kaotiyun.com/show/Hux4777K
0
考研数学三
相关试题推荐
证明:∫01dx∫01(xy)xydy=∫01xxdx.
求e-x2带皮亚诺余项的麦克劳林公式.
[2016年]设二维随机变量(X,Y)在区域D={(x,y)|0<x<1,}上服从均匀分布,令写出(X,Y)的概率密度;
[*]
(1990年)设f(x)在闭区间[0,c]上连续,其导数f’(x)在开区间(0,c)内存在且单调减小,f(0)=0,试应用拉格朗日中值定理证明不等式f(a+b)≤f(a)+f(b)其中a、b满足条件0≤a≤b≤a+b≤c.
已知反常积分=______.
曲线y=,直线x=2及x轴所围成的平面图形绕x轴旋转一周所成的旋转体体积为________。
求极限=_______.
设n阶矩阵A的各行元素之和均为零,且A的秩为n-1,则线性方程组Ax=0的通解为_______.
设二次型2x12+x22+x32+2x1x2+ax2x3的秩为2,则a=__________.
随机试题
我国古典文学作品中,思想性和艺术性结合最好的是()。
了解智力活动的动作结构,明确活动的方向是智力技能形成哪一阶段的特点【】
患者,女,35岁,已婚。患崩漏1年余。经血非时而至,经量甚多、色淡、质稀,面色苍白,气短懒言,大便不成形,舌淡苔薄白,脉沉弱。其证候是()
关于进度计划调整的说法,正确的是()。
下列各项,应通过“固定资产清理”科目核算的有()。
将风险资产进行对冲属于()。
一个基督徒问牧师天堂与地狱之间有什么差别,牧师把基督徒带到地狱,看到地狱里有一口巨大的盛满丰富食物的铁锅,地狱里的每个人都拿着一个长长的勺子去舀食物吃,但是勺子把太长,他们无法把食物送进自己嘴里,结果只能空着肚子饱受饥饿的煎熬,望锅兴叹。牧师又把基督徒带到
()是依照国家法律,以行政的手段进行指挥和管理,使公安机关高效率地执行行政职能。
选拔领导人才是领导者做好用人工作的重中之重。()
阅读以下说明和流程图,将应填入(n)处的字句写在对应栏内。【说明】已知头指针分别为La和lb的有序单链表,其数据元素都是按值非递减排列。现要归并La和Lb得到单链表Lc,使得Lc中的元素按值非递减排列。程序流程图如下所示:
最新回复
(
0
)