首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)在(-1,1)内二阶连续可导,且f’’(x)≠0.证明: (1)对(-1,1)内任一点x≠0,存在唯一的θ(x)∈(0,1),使得f(x)=f(0)+xf’[θ(x)x]; (2)
设f(x)在(-1,1)内二阶连续可导,且f’’(x)≠0.证明: (1)对(-1,1)内任一点x≠0,存在唯一的θ(x)∈(0,1),使得f(x)=f(0)+xf’[θ(x)x]; (2)
admin
2018-05-22
33
问题
设f(x)在(-1,1)内二阶连续可导,且f’’(x)≠0.证明:
(1)对(-1,1)内任一点x≠0,存在唯一的θ(x)∈(0,1),使得f(x)=f(0)+xf’[θ(x)x];
(2)
选项
答案
(1)对任意x∈(-1,1),根据微分中值定理,得 f(x)=f(0)+xf’[θ(x)x],其中0<θ(x)<1. 因为f’’(x)∈C(-1,1)且f’’(x)≠0,所以f’’(x)在(-1,1)内保号,不妨设f’’(x)>0,则 f’(x)在(-1,1)内单调增加,又由于x≠0,所以θ(x)是唯一的. (2)由泰勒公式,得 f(x)=f(0)+f’(0)x+[*]x
2
,其中ξ介于0与x之间, 而f(x)=f(0)+xf’[θ(x)x],所以有 [*] 令x→0,再由二阶导数的连续性及非零性,得[*]
解析
转载请注明原文地址:https://kaotiyun.com/show/Hvk4777K
0
考研数学二
相关试题推荐
(2002年试题,十一)已知A,B为三阶矩阵,且满足2A-1B=B-4E,其中E是三阶单位矩阵.(1)证明:矩阵A-2E可逆;(2)若求矩阵A.
(1998年试题,十)设y=y(x)是一向上凸的连续曲线,其上任意一点(x,y)处的曲率为,且此曲线上点(0,1)处的切线方程为y=x+1,求该曲线的方程,并求函数y=y(x)的极值.
函数的可去间断点的个数为
证明:(-1<x<1)
计算二重积分,其中D={(X,y)10≤X≤1,0≤y≤1}.
若矩阵相似于对角阵A,试确定常数a的值;并求可逆矩阵P使P-1AP=A.
设f(x)在[0,1]上具有二阶导数.且满足条件|f(x)|≤a,|f"(x)|≤b,其中a,b都是非负常数,c是(0,1)内任意一点,证明:.
设讨论它们在点(0,0)处的①偏导数的存在性;②函数的连续性;③方向导数的存在性;④函数的可微性.
当x→1时,无穷小~A(x+1)k,则A=_____,k=______.
随机试题
无论汽车行驶速度如何,前照灯应保证车前有明亮而均匀的照明,使驾驶员能看清车前100m以内路面上的任何障碍物。()
WithWhatDoYouBuyYourMoney?(10)Twoyearsago,IgavemyyearlytalkbeforetheAppliedPhilosophyInstituteinSunnyva
女,36岁,左胸部疼痛不适5天,CT图像如图,应诊断为
某患者男性,55岁,因低热、心悸、多汗、焦虑、易怒1周来诊。查体:T37.6℃,P100次/min,甲状腺工度肿大,右侧叶可触及小结节,质硬、明显触痛,无震颤及杂音;双手细震征(+),ESR90mm/h。检测甲状腺功能与摄131I率的结果可能是
A.糖明显下降 B.氯化物正常 C.蛋白质升高 D.细胞数升高 E.以上均不是脑脊液检查,化脓性脑膜炎具有而病毒性脑膜炎不具有的是
在声环境影响评价中,声源中心到预测点之间的距离超过声源最大几何尺寸()时,可将该声源近似为点声源。
在企业进行财产清查时,发现存货盘盈,经批准核销时,正确的账务处理方法为()。
科学家发现,一种“个子”高高、具有装饰作用的植物能够提供数量可观的能源,且决不会引起全球变暖。这种植物名叫芒草,生长在欧洲和美国。在美国伊利诺伊州进行的田间实验表明,无论从经济角度还是从环保角度来看,芒草都是能提供可持续能源的有效植物。本段文字重在说明(
下列罪数形态适用“从一重罪处断”的是()。
设X,Y是两个相互独立且服从正态分布N(0,1)的随机变量,则随机变量Z=max(X,y)的数学期望E(Z)=_______.
最新回复
(
0
)