首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知函数f(x)满足方程f"(x)+f’(x)-2f(x)=0及f"(x)+f(x)=2ex. (1)求f(x)的表达式; (2)求曲线y=f(x2)∫0xf(-t2)dt的拐点.
已知函数f(x)满足方程f"(x)+f’(x)-2f(x)=0及f"(x)+f(x)=2ex. (1)求f(x)的表达式; (2)求曲线y=f(x2)∫0xf(-t2)dt的拐点.
admin
2014-01-26
65
问题
已知函数f(x)满足方程f"(x)+f’(x)-2f(x)=0及f"(x)+f(x)=2e
x
.
(1)求f(x)的表达式;
(2)求曲线y=f(x
2
)∫
0
x
f(-t
2
)dt的拐点.
选项
答案
(1)齐次线性微分方程f"(x)+f’(x)-2f(x)=0的特征方程为:r
2
+r-2=0,特征根为:r
1
=1,r
2
=-2,因此齐次微分方程的通解为:f(x)=C
1
e
x
+C
2
e
-2x
. 于是f’(x)=C
1
e
x
-2C
2
e
-2x
,f(x)=C
1
e
x
+4C
2
e
-2x
, 代入f"(x)+f(x)=2e
x
得2C
1
e
x
+2C
1
e
-2x
=2e
x
,从而C
1
=1,C
2
=0, 故f(x)=e
x
. (2)因曲线方程为y=f(x
2
)∫
0
x
f(-t
2
)dt=e
x
2
∫
0
x
e
-t
2
dt,所以 y’=2xe
x
2
∫
0
x
e
-t
2
dt+1, . y"=2e
x
2
∫
0
x
edt+4xee
x
2
∫
0
x
e
-t
2
dt+2x =2(1+2x
2
)e
x
2
∫
0
x
e
-t
2
dt+2x. 显然,y"(0)=0,且当x>0时,y">0,当x<0时,y"<0.故所求拐点为(0,0).
解析
转载请注明原文地址:https://kaotiyun.com/show/Qm34777K
0
考研数学二
相关试题推荐
设二维随机变量(X,Y)在区域D={(x,y)|0
设α为n维单位向量,E为n阶单位矩阵,则()
(2003年)设函数f(x)在[0,3]上连续,在(0,3)内可导,且f(0)+f(1)+f(2)=3,f(3)=1.试证必存在ξ∈(0,3)使f’(ξ)=0.
假设D是矩阵A的r阶子式,且D≠0,但含D的一切r+1阶子式都等于0.那么矩阵A的一切r+1阶子式都等于0.
设随机变量X和y同分布,X的概率密度为(1)已知事件A={X>a}和B={Y>a}独立,且P{A∪B}=,求常数a;(2)求的数学期望.
[2016年]设函数f(x)连续,且满足求f(x).
(2000年)设函数f(x)在[0,π]上连续,且∫0πf(x)dx=0,∫0πf(x)cosxdx=0.试证明:在(0,π)内至少存在两个不同的点ξ1,ξ2,使f(ξ1)=f(ξ2)=0.
(2009年)袋中有1个红球、2个黑球与3个白球,现有放回地从袋中取两次,每次取一个球。以X、Y、Z分别表示两次取球所取得的红球、黑球与白球的个数。(Ⅰ)求P{X=1|Z=0};(Ⅱ)求二维随机变量(X,Y)的概率分布。
[2007年]设随机变量(X,Y)服从二维正态分布,且X与Y不相关,fX(x),fY(y)分别表示X,Y的概率密度,则在Y=y的条件下X的条件密度fX|Y(x|y)为().
当常数a取何值时,方程组无解、有无穷多个解?在有无穷多个解时,求出其通解。
随机试题
天马房地产开发股份有限公司系由蓝天公司、奔马公司于2012年发起设立,公司注册资本1000万元,蓝天公司出资70%,奔马公司出资30%。公司设立股东大会、董事会,因蓝天、奔马两股东认为公司规模在同行业中并不算大,故公司只设立了监事而未设监事会。公司成立后,
辩护词主要应就什么问题展开说理论辩?常用的辩护思路有哪些?
在Windows7中,新建文件夹的错误操作是()
补阳还五汤的功用( )。
甲、乙、丙、丁欲设立一有限合伙企业,合伙协议中约定了如下内容,其中哪些符合法律规定?(2008年试卷三第69题)
微波站的防雷时避雷针可固定在天线铁塔上,并采用()镀锌扁钢作为引下线。
配货作业有两个基本形式:分货方式又称摘果方式,拣选方式又称播种方式。
新时期最鲜明的特点是改革开放。2008年我国迎来改革开放、解放思想和实践标准问题大讨论()周年。
TheSoundandtheFuryiswrittenby______
Althoughrecentyearshaveseensubstantialreductionsinnoxiouspollutantsfromindividualmotorvehicles,thenumberofsuch
最新回复
(
0
)