首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A=E-ααT,其中α为n维非零列向量.证明: 当α是单位向量时A为不可逆矩阵.
设A=E-ααT,其中α为n维非零列向量.证明: 当α是单位向量时A为不可逆矩阵.
admin
2018-05-21
29
问题
设A=E-αα
T
,其中α为n维非零列向量.证明:
当α是单位向量时A为不可逆矩阵.
选项
答案
当α是单位向量时,由A
2
=A得r(A)+r(E-A)=n,因为E-A=αα
T
≠O,所以r(E-A)≥1,于是r(A)≤n-1<n,故A是不可逆矩阵.
解析
转载请注明原文地址:https://kaotiyun.com/show/I7r4777K
0
考研数学一
相关试题推荐
设y=f(x)是方程y"一2y’+4y=0的一个解,且f(x0)>0,f’(x0)=0,则函数f(x)在点x0处()
[x]表示x的最大整数部分,则=_________.
设n维向量α1,α2,…,αs的秩为r,则下列命题正确的是()
设总体X的分布函数为X1,X2,…,X10为来自总体X的简单随机样本,其观察值为1,1,3,1,0,0,3,1,0,1.(Ⅰ)求总体X的分布律;(Ⅱ)求参数θ的矩估计值;(Ⅲ)求参数θ的极大似然估计值.
设A是n(n>1)阶方阵,ξ1,ξ2,…,ξn是n维列向量,已知Aξ1=ξ2,Aξ2=ξ3,…,Aξn一1=ξn,Aξn=0,且ξn≠0.(Ⅰ)证明ξ1,ξ2,…,ξn线性无关;(Ⅱ)求Ax=0的通解;(Ⅲ)求出A的全部特征值和特征向量,并证明A不可
设X1,X2,…,Xn是取自二项总体B(5,)的简单随机样本,是其样本均值,则
某商场销售某种型号计算机,只有10台,其中有3台次品,现已售出2台.某顾客又来到该商场购买此种型号计算机.若该顾客买4台,以X,Y表示4台计算机中次品数与正品数,求4台中次品数的数学期望,并求协方差cov(X,Y).
设A是三阶矩阵,α1,α2,α3为三维列向量且α1≠0,若Aα1=α1,Aα2=α1+α2,Aα3=α2+α3证明:A不可相似对角化
设可对角化求常数a;
进行5次试验,测得锰的熔化点(℃)如下:12691271125612651254已知锰的熔化点服从正态分布,是否可以认为锰的熔化点显著高于1250℃?(取显著性水平α=0.01)
随机试题
皮质醇症的主要临床表现包括()
A.餐后半小时开始上腹痛,下餐前缓解B.餐后立即脐周及右下腰痛,排便缓解C.饱餐后出现上腹痛,剧烈持续D.空腹和夜间出现上腹痛,进餐缓解E.进餐后立即上腹痛,逐渐缓解十二指肠溃疡的疼痛特点多为
患者发热,查及全血细胞减少,肝脾淋巴结肿大,首先考虑()。
色调由色彩的()三要素决定。
市政公用工程分为( )。
下列选项中,在I/O总线的数据线上二传输的信息包括I.I/O接口中的命令字Ⅱ.I/O接口中的状态字Ⅲ.中断类型号
鲁迅先生家里的花瓶,好像画上所见的西洋女子用以取水的瓶子,灰蓝色,有点瓷釉自然堆起的纹痕,瓶口的两边,还有两个瓶子,瓶里种的是几棵万年青。我第一次看到这花的时候,就问过:“这叫什么名字,屋中不生火炉,也不冻死?”第一次,走进鲁迅家里去,那是快接近黄昏的时节
我国经济发展要坚持速度、结构、效益、质量四者的统一,其中处于核心地位的是
The(Non)RisksofMobilePhonesDomobilephonescauseexplosionsatpetrolstations?Thatquestionhasjustbeenexhaustiv
Todaynanotechnology(纳米技术)isstillinaformativephase.Yetitismaturingrapidly.Between1997and2005,investmentinnanote
最新回复
(
0
)