首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
证明:r(A)=r(ATA).
证明:r(A)=r(ATA).
admin
2019-11-25
43
问题
证明:r(A)=r(A
T
A).
选项
答案
只需证明AX=0与A
T
AX=0为同解方程组即可. 若AX
0
=0,则A
T
AX
0
=0. 反之,若A
T
AX
0
=0,则X
0
T
A
T
AX
0
=0[*](AX
0
)
T
(AX
0
)=0[*]AX
0
=0, 所以AX=0与A
T
AX=0为同解方程组,从而r(A)=r(A
T
A).
解析
转载请注明原文地址:https://kaotiyun.com/show/I9D4777K
0
考研数学三
相关试题推荐
设f(x),g(x)在[a,b]上连续.证明:至少存在一点ξ∈(a,b),使得f(ξ)∫ξbg(x)dx=g(ξ)∫aξf(x)dx.
设f(x)在(一∞,+∞)内连续,以T为周期,证明:(1)∫aa+Tf(x)dx=∫0Tf(x)dx(a为任意实数);(2)∫0xf(t)dt以T为周期∫0Tf(x)dx=0;(3)∫f(x)dx(即f(x)的全体原函数)周期
(1)若f(x)=,试证f’(0)=0;(2)若f(x)在(一∞,+∞)上连续,且f(x)=∫0xf(t)dt,试证f(x)≡0(一∞<x<+∞).
设A是m阶矩阵,B是n阶矩阵,且|A|=a,|B|=b,C=,则|C|=_______.
A是n阶方阵,A*是A的伴随矩阵,则|A*|=()
设A是n阶矩阵,n维列向量α和β分别是A和AT的特征向量,特征值分别为1和2。(Ⅰ)证明βTα=0;(Ⅱ)求矩阵βαT的特征值;(Ⅲ)判断βαT是否相似于对角矩阵(要说明理由)。
设A是m×n阶矩阵,试证明:(Ⅰ)如果A行满秩(r(A)=m),则对任何m×s矩阵C,矩阵方程AX=C都有解。(Ⅱ)如果A列满秩(r(A)=n),则存在n×m矩阵B,使得BA=E(E是n阶单位矩阵)。
某种仪器由三个部件组装而成,假设各部件质量互不影响且它们的优质品率分别为0.8,0.7与0.9.已知如果三个部件都是优质品,则组装后的仪器一定合格;如果有一个部件不是优质品,则组装后的仪器不合格率为0.2;如果有两个部件不是优质品,则仪器的不合格率为0.6
a为什么数时二次型x12+3x22+2x32+2ax2x3可用可逆线性变量替换化为2y12一3y22+5y32?
以下3个命题:①若数列{un}收敛于A,则其任意子数列必定收敛于A;②若单调数列{xn}的某一子数列收敛于A,则该数列必定收敛于A;③若数列{x2n}与{x2n+1}都收敛于A,则数列{xn}必定收敛于A.正确的个数为()
随机试题
施工现场混凝土搅拌车清洗产生的污水,应( )。
叹年来踪迹,何事苦淹留?何事:淹留:
耳垂采血的特点是
A.和表面上皮紧邻的细胞致密排列成生发层B.空泡状核和明显的圆核仁的“蜘蛛"细胞C.由圆形细胞构成,类似淋巴瘤D.独特的球形、玻璃样、嗜酸性胞质内包涵体E.由未分化圆形至梭形胞质明显嗜酸性的梭形、蝌蚪形、球拍样多形细胞混合构成多形性横纹肌肉瘤
进行心肺复苏可采取的措施不包括
门静脉高压患者脾切除术后,要定期监测血小板计数,目的是
天花粉引产的有效成分是
甲、乙、丙、丁共同投资设立了A有限合伙企业(以下简称A企业)。合伙协议约定:甲、乙为普通合伙人,分别出资10万元;丙、丁为有限合伙人,分别出资15万元;甲执行合伙企业事务,对外代表A企业。2016年A企业发生下列事实:2月,甲以A企业的名义与B公司签订了
建立现代企业制度是我国国有企业的根本途径和方向,现代企业的优势在于:
在互联网社会.手机已经成为我们日常生活中必不可少的社交工具,手机APP使用方便但也危险重重。下列做法不利于保护个人信息安全的是:
最新回复
(
0
)