首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设函数f(x)在(-∞,+∞)内连续,且,证明: (Ⅰ)若f(x)是偶函数,则F(x)也是偶函数; (Ⅱ)若f(x)是单调减函数,则F(x)也是单调减函数。
设函数f(x)在(-∞,+∞)内连续,且,证明: (Ⅰ)若f(x)是偶函数,则F(x)也是偶函数; (Ⅱ)若f(x)是单调减函数,则F(x)也是单调减函数。
admin
2019-01-15
86
问题
设函数f(x)在(-∞,+∞)内连续,且
,证明:
(Ⅰ)若f(x)是偶函数,则F(x)也是偶函数;
(Ⅱ)若f(x)是单调减函数,则F(x)也是单调减函数。
选项
答案
方法一:(Ⅰ)[*] 若f(x)是偶函数,则有f(-x)=f(x)。故 [*] 即F(x)也是偶函数。 (Ⅱ)欲证F(x)是单调减函数,则需证F
’
(x)<0或F
’
(x)≤0且等号仅在某些点成立。 由已知[*] 则有[*] 因f(x)是单调减函数,t介于0与x之间,所以当x>0时,f(x)-f(t)<0,故F
’
(x)<0;当x<0时,f(x)-f(t)>0,故F
’
(x)<0;当x=0时,F
’
(0)=0。 即x∈(-∞,+∞)时,F
’
(x)≤0且符号仅在x=0时成立,因此F(x)也是单调减函数。 方法二:(Ⅰ)用函数奇偶性质,[*]。 因f(t)是偶函数,则tf(t)是奇函数。而f(t)是偶函数[*]是奇函数[*]是偶函数;tf(t)是奇函数[*]是偶函数。因此,由偶函数的性质知F(x)是偶函数。 (Ⅱ)由[*],由积分中值定理知,存在一点ξ∈(0,x),使得[*],故 F
’
(x)=xf(x)-f(ξ)x=x[f(x)-f(ξ)]。 与方法以同样讨论可知F(x)是单调减函数。
解析
转载请注明原文地址:https://kaotiyun.com/show/IEP4777K
0
考研数学三
相关试题推荐
(97年)一商家销售某种商品的价格满足关系P=7-0.2χ(万元/吨),χ为销售量(单位:吨),商品的成本函数是C=3χ+1(万元)(1)若每销售一吨商品,政府要征税t(万元),求该商家获最大利润时的销售量;(2)t为何值时,政府税收总
(98年)设曲线f(χ)=χn在点(1,1)处的切线与χ轴的交点为(ξn,0),则f(ξn)=_______.
(97年)若f(χ)=,则∫01f(χ)dχ=_______.
(96年)设∫χf(χ)dχ=arcsinχ+C,则=_______.
(99年)设f(χ)是连续函数,F(χ)是f(χ)的原函数,则【】
(00年)=_______.
(00年)设A,B是二随机事件,随机变量试证明随机变量X和Y不相关的充分必要条件是A与B相互独立.
(08年)设n元线性方程组Aχ=b,其中(Ⅰ)证明行列式|A|(n+1)an;(Ⅱ)当a为何值时,该方程组有唯一的解,并在此时求χ1;(Ⅲ)当a为何值时,该方程组有无穷多解,并在此时求其通解.
(03年)设n维向量α=(a,0,…,0,a)T,a<0;E为n阶单位矩阵,矩阵A=E-ααT,B=E+aaT,其中A的逆矩阵为B,则a=_______.
利用中心极限定理证明:
随机试题
什么叫拉铆?
在组织内部的人际关系中,决定一个行政组织团结或分裂的关键是()
格林-巴利综合征的病人,出现呼吸肌重度麻痹时应( )。
A.突发胸部撕裂样疼痛,伴全身冷汗,但血压常升高B.胸部和背部持续烧灼样疼痛C.活动后胸骨后或左胸部剧烈疼痛,休息后缓解D.常有心前区针刺样疼痛E.胸骨后剧烈压榨样疼痛,舌下含服硝酸甘油不能缓解急性心肌梗死
对于盘盈盘亏的财产物资,需在期末结账前处理完毕,如在期末结账前尚未经批准处理的,等批准后进行处理。()
企业计提短期借款的利息时,借方计入的会计科目是()。
英国古典政治经济学家亚当.斯密提出的赋税原则包括()。[2007年真题]
阅读材料,根据要求完成教学设计。“获取网络信息的策略和技巧”模块强调学生在经历信息获取的过程中,掌握信息获取的策略与方法。教材着重要求学生学习网络信息检索的一般方法,归纳网络搜索引擎的使用技巧,这将为本模块其他内容和选修模块的继续学习奠定重要基础。本节学
证明:当0<a<b<π时,bsinb+2cosb+πb>asina+2cosa+πa.
A、Shortageoffunding.B、Lackofresources.C、Transportproblems.D、Poormanagement.C女士说该地区存在地理问题(geographicalproblems),并对此进行了
最新回复
(
0
)