首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设函数f(x)在(-∞,+∞)内连续,且,证明: (Ⅰ)若f(x)是偶函数,则F(x)也是偶函数; (Ⅱ)若f(x)是单调减函数,则F(x)也是单调减函数。
设函数f(x)在(-∞,+∞)内连续,且,证明: (Ⅰ)若f(x)是偶函数,则F(x)也是偶函数; (Ⅱ)若f(x)是单调减函数,则F(x)也是单调减函数。
admin
2019-01-15
81
问题
设函数f(x)在(-∞,+∞)内连续,且
,证明:
(Ⅰ)若f(x)是偶函数,则F(x)也是偶函数;
(Ⅱ)若f(x)是单调减函数,则F(x)也是单调减函数。
选项
答案
方法一:(Ⅰ)[*] 若f(x)是偶函数,则有f(-x)=f(x)。故 [*] 即F(x)也是偶函数。 (Ⅱ)欲证F(x)是单调减函数,则需证F
’
(x)<0或F
’
(x)≤0且等号仅在某些点成立。 由已知[*] 则有[*] 因f(x)是单调减函数,t介于0与x之间,所以当x>0时,f(x)-f(t)<0,故F
’
(x)<0;当x<0时,f(x)-f(t)>0,故F
’
(x)<0;当x=0时,F
’
(0)=0。 即x∈(-∞,+∞)时,F
’
(x)≤0且符号仅在x=0时成立,因此F(x)也是单调减函数。 方法二:(Ⅰ)用函数奇偶性质,[*]。 因f(t)是偶函数,则tf(t)是奇函数。而f(t)是偶函数[*]是奇函数[*]是偶函数;tf(t)是奇函数[*]是偶函数。因此,由偶函数的性质知F(x)是偶函数。 (Ⅱ)由[*],由积分中值定理知,存在一点ξ∈(0,x),使得[*],故 F
’
(x)=xf(x)-f(ξ)x=x[f(x)-f(ξ)]。 与方法以同样讨论可知F(x)是单调减函数。
解析
转载请注明原文地址:https://kaotiyun.com/show/IEP4777K
0
考研数学三
相关试题推荐
(07年)设某商品的需求函数为Q=160-2p.其中Q,P分别表示需求量和价格,如果该商品需求弹性的绝对值等于1,则商品的价格是【】
(01年)设f(χ)的导数在χ=a处连续,又=-1,则【】
(91年)设A为n阶可逆矩阵,λ是A的一个特征根,则A的伴随矩阵A*的特征值之一是【】
(94年)设有线性方程组(1)证明:若a1,a2,a3,a4两两不相等,则此线性方程组无解;(2)设a1=a3=k,a2=a4=-k(k≠0),且已知β1=(-1,1,1)T,β2=(1,1,-1)T是该方程组的两个解,写出此方程组的通
(01年)设A为n阶实对称矩阵,秩(A)=n,Aij是A=(aij)n×n中元素aij的代数余子式(i,j=1,2,…,n),二次型f(χ1,χ2,…,χn)=.(1)记X=(χ1,χ2,…,χn)T,把f(χ1,χ2,…χn)写成矩阵形式,并证
(16年)设A,B是可逆矩阵,且A与B相似,则下列结论错误的是【】
设A为n阶非零方阵,且存在某正整数m,使Am=O.求A的特征值并证明A不与对角矩阵相似.
设a>0,a≠1,且则p=______
确定a=________、b=_______,使得当χ→0时,a-cosbχ+sin3χ与χ3为等价无穷小.
设则B等于().
随机试题
律师、律师事务所行政处罚的从轻或者减轻情节不包括()
Thehumanbodyhasdevelopeditsmillionsofnervestobehighlyawareofwhatgoesonbothinsideandoutsideofit.Thishelps
甲公司和乙公司2015年度和2016年度发生的有关交易或事项如下:(1)2015年5月10日,乙公司的客户(丙公司)因产品质量问题向法院提起诉讼,请求法院裁定乙公司赔偿损失200万元,截止2015年6月30日,法院尚未对上述案件作出判决,在向法院了解情况
在漫长的中国封建社会里,学校教育得到了进一步发展,具体的类型有【】
某村的工地由政府承包给其他工程负责人,当地村民不服,把项目经理打成轻微伤,公安民警把打人的村民带回公安局。该村的其他村民不服,跑到工地闹事,阻止施工,并向公安局施压要求放人。当地的村干部也认为工程应由本村承包,也在阻挠施工。针对案例,下列哪一做法体现了
辛亥革命失败以后,为了挽救革命成果、保护共和,资产阶级革命派与以袁世凯为首的北洋军阀政府进行了不屈的斗争,以下属于资产阶级革命派为挽救共和所做的斗争主要有:
抗战初期,国民党正面战场除了台儿庄战役取得大捷外,其他战役几乎都是以退却、失败而结束的,造成这种状况的原因有()
在一次晚会上,有n(n≥3)对夫妻做一游戏,将男士与女士随机配对,则夫妻配成埘的期望值为
[*]
设总体X~N(μ,σ2),X1,X2,…,Xn(n=16)是来自X的简单随机样本,求下列概率:
最新回复
(
0
)