设f(x)在[0,1]上连续,在(0,1)内可导,f(0)=0,f(1/2)=1,f(1)=0,证明:存在η∈(1/2,1),使得f(η)=η;对任意的k∈(-∞,+∞),存在∈∈(0,η),使得f’(ξ)-k[f(ξ)-ξ]=1.

admin2022-10-09  31

问题 设f(x)在[0,1]上连续,在(0,1)内可导,f(0)=0,f(1/2)=1,f(1)=0,证明:存在η∈(1/2,1),使得f(η)=η;对任意的k∈(-∞,+∞),存在∈∈(0,η),使得f’(ξ)-k[f(ξ)-ξ]=1.

选项

答案令φ(x)=f(x)-x,φ(x)在[0,1]上连续,φ(1/2)-1/2>0,φ(1)=-1<0,由零点定理,存在η∈(1/2,1),使得φ(η)=0,即f(η)=η.设F(x)=e-kxφ(x),显然F(x)在[0,η]上连续,在(0,η)内可导,且F(0)=F(η)=0,由罗尔定理,存在ξ∈(0,η),使得F’(ξ)=0,整理得f’(ξ)-k[f(ξ)-ξ]=1.

解析
转载请注明原文地址:https://kaotiyun.com/show/IKR4777K
0

最新回复(0)