首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)在[0,1]上连续,在(0,1)内可导,f(0)=0,f(1/2)=1,f(1)=0,证明:存在η∈(1/2,1),使得f(η)=η;对任意的k∈(-∞,+∞),存在∈∈(0,η),使得f’(ξ)-k[f(ξ)-ξ]=1.
设f(x)在[0,1]上连续,在(0,1)内可导,f(0)=0,f(1/2)=1,f(1)=0,证明:存在η∈(1/2,1),使得f(η)=η;对任意的k∈(-∞,+∞),存在∈∈(0,η),使得f’(ξ)-k[f(ξ)-ξ]=1.
admin
2022-10-09
68
问题
设f(x)在[0,1]上连续,在(0,1)内可导,f(0)=0,f(1/2)=1,f(1)=0,证明:存在η∈(1/2,1),使得f(η)=η;对任意的k∈(-∞,+∞),存在∈∈(0,η),使得f’(ξ)-k[f(ξ)-ξ]=1.
选项
答案
令φ(x)=f(x)-x,φ(x)在[0,1]上连续,φ(1/2)-1/2>0,φ(1)=-1<0,由零点定理,存在η∈(1/2,1),使得φ(η)=0,即f(η)=η.设F(x)=e
-kx
φ(x),显然F(x)在[0,η]上连续,在(0,η)内可导,且F(0)=F(η)=0,由罗尔定理,存在ξ∈(0,η),使得F’(ξ)=0,整理得f’(ξ)-k[f(ξ)-ξ]=1.
解析
转载请注明原文地址:https://kaotiyun.com/show/IKR4777K
0
考研数学三
相关试题推荐
已知随机变量X的概率分布为随机变量Y的概率分布为而且P{XY=0}=1.求(X,Y)的联合概率分布;
按要求求下列一阶差分方程的通解或特解.求yx+1-2yx=3x2满足条件yx(0)=0的解;
设曲线L位于xOy平面的第一象限内,L上任一点M处的切线与y轴总相交,交点记为A.已知且L过点求L的方程.
如果F(x)是f(x)的一个原函数,G(x)是的一个原函数,且F(x)G(x)=-1,f(0)=1,求f(x).
设线性无关的函数y1,y2与y3均为二阶非齐次线性微分方程的解,C1和C2是任意常数,则该非齐次线性方程的通解是()
设矩阵矩阵B=(kE+A)2,其中k为实数,求对角矩阵Λ,使B与Λ相似.并求k为何值时,B为正定矩阵.
设x>0时,可微函数f(x)及其反函数g(x)满足关系式则f(x)=___________.
设f(x)为二阶连续可导,且,证明级数绝对收敛.
求常数k的取值范围,使得f(x)=kln(1+n)一arctanx当x>0时单调增加.
下列命题正确的是().
随机试题
郄穴多用于治疗
A.徐发B.继发C.合病D.并病E.复发
区别血尿与血红蛋白尿的主要方法是
(2008)土的十字板剪切试验适用于下列哪一种黏性土?
按照权证行权所买卖的标的股票来源不同,可将权证分为()。
我国饭店最常用的计提折扣的方法是()的月折旧额与年折旧率都是不变的。
银行不得受理的银行汇票有()。
根据刑事法律制度的规定,下列各项中,属于管制法定量刑期的是()。
1917年俄国爆发的十月社会主义革命,对中国的先进分子的主要影响是
已知矩阵A的伴随矩阵A*=diag(1,1,1,8),且ABA—1=BA—1+3E,求B。
最新回复
(
0
)