首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)在[0,1]上连续,在(0,1)内可导,f(0)=0,f(1/2)=1,f(1)=0,证明:存在η∈(1/2,1),使得f(η)=η;对任意的k∈(-∞,+∞),存在∈∈(0,η),使得f’(ξ)-k[f(ξ)-ξ]=1.
设f(x)在[0,1]上连续,在(0,1)内可导,f(0)=0,f(1/2)=1,f(1)=0,证明:存在η∈(1/2,1),使得f(η)=η;对任意的k∈(-∞,+∞),存在∈∈(0,η),使得f’(ξ)-k[f(ξ)-ξ]=1.
admin
2022-10-09
44
问题
设f(x)在[0,1]上连续,在(0,1)内可导,f(0)=0,f(1/2)=1,f(1)=0,证明:存在η∈(1/2,1),使得f(η)=η;对任意的k∈(-∞,+∞),存在∈∈(0,η),使得f’(ξ)-k[f(ξ)-ξ]=1.
选项
答案
令φ(x)=f(x)-x,φ(x)在[0,1]上连续,φ(1/2)-1/2>0,φ(1)=-1<0,由零点定理,存在η∈(1/2,1),使得φ(η)=0,即f(η)=η.设F(x)=e
-kx
φ(x),显然F(x)在[0,η]上连续,在(0,η)内可导,且F(0)=F(η)=0,由罗尔定理,存在ξ∈(0,η),使得F’(ξ)=0,整理得f’(ξ)-k[f(ξ)-ξ]=1.
解析
转载请注明原文地址:https://kaotiyun.com/show/IKR4777K
0
考研数学三
相关试题推荐
已知随机变量X的概率分布为随机变量Y的概率分布为而且P{XY=0}=1.问X与Y是否相互独立,为什么?
设有3阶实对称矩阵A满足A3-6A2+11A-6E=0,且|A|=6.判断二次型f=xT(A+E)x的正定性.
已知实二次型f(x1,x2,x3)=xTAx的矩阵A满足tr(A)=-6.AB=C,其中求出该二次型f(x1,x2,x3).
设f(x),g(x)在(-∞,+∞)上有定义,且x=x1是f(x)的唯一间断点,x=x2是g(x)的唯一间断点,则()
设F(X)在[0,2]上连续,在(0,2)内三阶可导,且=2,f(1)=1,f(2)=6.证明:存在ξ∈(0,2),使得f"’(ξ)=9.
设z=z(x,y)由F(az一by,bx一cz,cy-ax)=0确定,其中函数F连续可偏导且一≠0,则=_______________.
设曲线y=xn在点(1,1)处的切线交x轴于点(ξn,0),求.
袋中有10个大小相等的球,其中6个红球4个白球,随机抽取2次,每次取1个,定义两个随机变量如下:就下列两种情况,求(X,Y)的联合分布律:(1)第一次抽取后放回;(2)第一次抽取后不放回.
∫0xsin2xtdt=______.
设y=xsin2x,则dy=________.
随机试题
甲公司和乙公司签订两份合同,甲公司向乙公司供应50吨面粉,乙公司向甲公司提供磨面机器一套。至合同履行期,甲公司不愿履行合同,提出双方相互抵销,乙公司不同意抵销。根据我国法律有关规定,双方债权债务()。
计算二重积分xy2dxdy,其中D是由y2=2x,x=1所围成的平面区域
射频消融(RFCA)的适应证。
A.6~8岁B.9~12岁C.10~12岁D.14~16岁E.16~18岁模仿能力的最快发展阶段为()
某商品住宅开发项目,征收土地面积5000m2,其中建设用地面积4500m2,代征地面积500m2,规划建筑面积为15000m2。甲房地产开发公司(以下简称甲公司)于2008年10月18日以出让方式取得该项目用地,支付了地价款和3%的契税,取得了国有土地使用
下列各项中,不属于作业成本管理中节约成本途径的是()。
(2015年真题)下列犯罪中,属于我国刑法所规定的告诉才处理的有()。
下列用户XUEJY的电子邮件地址中,正确的是()。
ApersonbecomespartoftheChristiancommunitythroughbaptism--itisamatterofchoice【C1】______birth.TheChristiancommun
Hegaveatalk________modemMusic.
最新回复
(
0
)