首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设方程组 有解.(1)确定a、b的值;(2)求其导出组的基础解系,并用之表示原方程组的全部解.
设方程组 有解.(1)确定a、b的值;(2)求其导出组的基础解系,并用之表示原方程组的全部解.
admin
2018-08-03
29
问题
设方程组
有解.(1)确定a、b的值;(2)求其导出组的基础解系,并用之表示原方程组的全部解.
选项
答案
对方程组的增广矩阵施行初等行变换: [*] 由此可见,方程组有解→b—3a=0,2—2a=0.即a=1,b=3. 当a=1,b=3时,对矩阵B作初等行变换: [*] 由此得方程组的用自由未知量表示的通解为 [*](x
3
,x
4
,x
5
为自由未知量), 对应齐次方程组Ax=0的通解为 [*](x
3
,x
4
,x
5
为自由未知量) 由此得Ax=O的基础解系为 ξ
1
=(1,一2,1,0,0)
T
,ξ
2
=(1,一2,0,1,0)
T
,ξ
3
=(5,一6,0,0,1)
T
, 又原方程组有特解η=(一2,3,0,0,0)
T
,故原方程组的通解为 x=η+c
1
ξ
1
+c
2
ξ
2
+c
3
ξ
3
,其中c
1
,c
2
,c
3
为任意常数.
解析
转载请注明原文地址:https://kaotiyun.com/show/Igg4777K
0
考研数学一
相关试题推荐
设f(x)在[0,2]上连续,且f(0)=0,f(1)=1.证明:(1)存在c∈(0,1),使得f(c)=1—2c;(2)存在ξ∈[0,2],使得2f(0)+f(1)+3f(2)=6f(ξ).
设A为n阶非奇异矩阵,α是n维列向量,b为常数,P=(1)计算PQ;(2)证明PQ可逆的充分必要条件是αTA-1α≠b.
设非负函数f(x)当x≥0时连续可微,且f(0)=1.由y=f(x),x轴,y轴及过点(x,0)且垂直于x轴的直线围成的图形的面积与y=f(x)在[0,x]上弧的长度相等,求f(x).
设A=有四个线性无关的特征向量,求A的特征值与特征向量,并求A2010.
设α1,α2,…,αt为n个n维向量,证明:α1,α2,…,αt线性无关的充分必要条件是任一n维向量总可由α1,α2,…,αt线性表示.
假设随机事件A与B相互独立,P(A)=P=a一1,P(A∪B)=,求a的值.
设二维正态随机变量(X,Y)的概率密度为f(x,y),已知条件概率密度fX|Y(x|y)=.试求:(Ⅰ)常数A和B;(Ⅱ)fX(x)和fY(y);(Ⅲ)f(x,y).
设二维连续型随机变量(X,Y)在区域D上服从均匀分布,其中D={(x,y)}|x+y|≤1,|x一y|≤1},求X的边缘密度fX(x)与在X=0条件下,关于Y的条件密度fY|X(y|0).
设随机变量X和Y的联合密度为(Ⅰ)试求X的概率密度f(x);(Ⅱ)试求事件“X大于Y”的概率P{X>Y};(Ⅲ)求条件概率P{Y>1|X<0.5}.
判别下列级数的敛散性(包括绝对收敛或条件收敛):
随机试题
参与嘌呤合成的原料来自下列哪些物质?
男孩,2岁。突起高热,1天内反复惊厥,就医后被诊断为中毒性痢疾,收入院治疗。
如下哪一项不是普通感冒与时行感冒的区别
《建设项目环境风险评价技术导则》作为建设项目环境影响报告书环境风险评价篇章()的技术依据。
下列关于投资建设项目的含义说法不正确的是( )。
不属于建筑业常见的重要环境因素的是( )。
职业道德行为习惯是衡量会计人员的职业道德素质高低的重要标志。()
如果规模报酬不变,长期平均成本等于边际成本且不变。()
草书的代表人物有()。
求二元函数z=x2+12xy+2y2在区域D={(x,y)|4x2+y2≤25}上的最大值与最小值.
最新回复
(
0
)