首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)在x=x0的某邻域内有定义,在x=x0的某去心邻域内可导,则下列说法正确的是
设f(x)在x=x0的某邻域内有定义,在x=x0的某去心邻域内可导,则下列说法正确的是
admin
2019-07-12
40
问题
设f(x)在x=x
0
的某邻域内有定义,在x=x
0
的某去心邻域内可导,则下列说法正确的是
选项
A、
B、
C、
D、
答案
C
解析
解答本题的关键是将f’(x
0
)的定义式与
联系来考虑.
对于(A):取f(x)=
,但f(x)在x=x
0
处不连续,从而f’(x
0
)不存在.故(A)不对,同时也说明(D)不对.
对于(B):取f(x)=
显然f’(0)存在,但
不存在.故(B)也不对.
由排除法可知,应选(C).
或直接证明(C)正确.反证法:假设f’(x
0
)存在,则f(x)在x=x
0
处连续,那么在
条件下,由洛必达法则有
矛盾,所以f’(x
0
)不存在.
转载请注明原文地址:https://kaotiyun.com/show/IjJ4777K
0
考研数学三
相关试题推荐
设二次型f(x1,x2,x3)在正交变换x=Py下的标准形为2y12+y22-y32,其中P=(e1,e2,e3),若Q=(e1,-e3,e2),f(x1,x2,x3)在正交变换x=Qy下的标准形为()
设矩阵A=,其行列式|A|=一1,又A的伴随矩阵A*有一个特征值λ0,属于λ0的一个特征向量为α=(一1,一1,1)T,求a,b,c和λ0的值。
已知齐次线性方程组其中ai≠0,试讨论a1,a2,…,an和b满足何种关系时:(Ⅰ)方程组仅有零解;(Ⅱ)方程组有非零解。在有非零解时,求此方程组的一个基础解系。
设A为三阶矩阵,|A|=3,A*为A的伴随矩阵,若交换A的第一行与第二行得到矩阵B,则|BA*|=__________。
(2010年)箱中装有6个球,其中红、白、黑球的个数分别为1,2,3个,现从箱中随机地取出2个球,记X为取出的红球个数,Y为取出的白球个数。(Ⅰ)求随机变量(X,Y)的概率分布;(Ⅱ)求Cov(X,Y)。
(2012年)设随机变量X与Y相互独立,且都服从参数为1的指数分布,V=min{X,Y},U=max{X,Y}。(Ⅰ)求V的概率密度fV(u);(Ⅱ)求E(U+V)。
在考核中,若学员中靶两次,则认定合格而停止射击,但限定每人最多只能射击三次.设事件A=“考核合格”,B=“最多中靶一次”,C=“射击三次”,已知学员中靶率为p(0<p<1),则
设函数f(x)(x≥0)可微,且f(x)>0.将曲线y=f(x),x=1,x=a(a>>1)及x轴所围成平面图形绕x轴旋转一周得旋转体体积为[a2f(a)-f(1)].若求:f(x)的极值.
设f(x)在x=x0的邻域内连续,在x=x0的去心邻域内可导,且证明:f’(x0)=M.
设函数f(x)满足xf’(x)-2f(x)=-x,且由曲线y=f(x),x=1及x轴(x≥0)所围成的平面图形为D.若D绕x轴旋转一周所得旋转体体积最小,求:曲线y=f(x);
随机试题
计算。
关于正常妊娠,下述哪些项是正确的
预防MODS的基本要点中,错误的是
嵌顿性疝与绞窄性疝的根本区别是
工程项目人力资源管理的特点是()。
国家标准《重大危险源辨认》的实施时间是()。
根据《中华人民共和国建筑法》的规定,下列关于建筑工程施工许可制度的表述中,建设单位的正确做法是( )。
甲公司和乙公司有关诉讼资料如下:(1)甲公司2011年8月2日起诉乙公司违约,根据乙公司法律顾问的职业判断,认为乙公司胜诉的可能性为40%,败诉的可能性为60%。如果败诉,需要赔偿的:金额在450~47万元之间,同时还应承担诉讼费3万元。(2)甲公司根
第一次以法律形式宣布废除封建帝制的宪法性文件是()。
北京某高校的王朋老师制作演示文稿的水平非常高,他制作的各类演示文稿深受用户好评。最近,王朋老师受北京市节能环保低碳创业大赛组委会委托,将要制作一份有关赛事宣传的演示文稿,该演示文稿主要用于展台自动播放。请按照下列要求帮助王朋老师组织材料完成演示文稿的整合制
最新回复
(
0
)