首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设矩阵的特征值有一个二重根,求a的值,并讨论矩阵A是否可相似对角化。
设矩阵的特征值有一个二重根,求a的值,并讨论矩阵A是否可相似对角化。
admin
2018-12-19
59
问题
设矩阵
的特征值有一个二重根,求a的值,并讨论矩阵A是否可相似对角化。
选项
答案
矩阵A的特征多项式为 |λE—A|=[*]=(λ一2)(λ
2
一8λ+18+3a)。 如果λ=2是单根,则λ
2
一8λ+18+3a是完全平方,必有18+3a=16,即a=[*]。则A的 特征值是2,4,4,而r(4E一A)=2,故λ=4只有一个线性无关的特征向量,从而A不能相似对角化。 如果λ=2是二重特征值,则将λ=2代入λ
2
一8λ+18+3A=0可得A=一2。于是λ
2
一8λ+18+3A=(λ一2)(λ一6)。则矩阵A的特征值是2,2,6,而r(2E—A)=1,故λ=2有两个线性无关的特征向量,从而A可以相似对角化。
解析
转载请注明原文地址:https://kaotiyun.com/show/Ijj4777K
0
考研数学二
相关试题推荐
二阶常系数非齐次线性方程y’’一4y’+3y=2e2x的通解为y=______________.
设函数f(u)具有二阶连续导数,而z=f(exsiny)满足方程求f(u).
函数在[一π,π]上的第一类间断点是x=()
设函数f(x)在[0,3]上连续,在(0,3)内存在二阶导数,且证明存在η∈(0,2),使f(η)=f(0);
(2008年)(Ⅰ)证明积分中值定理:若函数f(χ)在闭区间[a,b]上连续,则至少存在一点η∈[a,b],使得∫abf(χ)dχ=f(η)(b-a);(Ⅱ)若函数φ(χ)具有二阶导数,且满足φ(2)>φ(1),φ(2)>∫φ(χ)dχ,则至少存
(2007年)设D是位于曲线y=(a>1,0≤χ<+∞)下方、χ轴上方的无界区域.(Ⅰ)求区域D绕χ轴旋转一周所成旋转体的体积V(a);(Ⅱ)当a为何值时,V(a)最小?并求此最小值.
(2003年)有一平底容器,其内侧壁是由曲线χ=φ(y)(y≥0)绕y轴旋转而成的旋转曲面(如图),容器的底面圆的半径为2m.根据设计要求,当以3m3/min的速率向容器内注入液体时,液面的面积将以πm3/min的速率均匀扩大(假设注入液体前,容器内无液体
(1999年)求初值问题的通解.
以下4个命题①设f(x)是(一∞,+∞)上连续的奇函数,则∫一∞+∞f(x)dx必收敛,且∫一∞+∞f(x)dx=0;②设f(x)在(一∞,+∞)上连续,且∫一RRf(x)dx存在,则∫一∞+∞f(x)dx必收敛,且∫一∞+∞f(x)dx=∫一RRf(
(87年)求由曲线y=1+sinx与直线y=0,x=0,x=π围成的曲边梯形绕Ox轴旋转而成旋转体体积V.
随机试题
抽样
Mydadismyherobecauseheisbrave,skilled,andrespectful.Iknowmanypeoplesaytheirdadsaretheirheroes,butmydadt
口角炎的治疗原则为
谭某拥有一栋别墅,地处偏僻郊区,平日极少人员出没,由于谭某极少在别墅居住,故害怕无人居住期间有小偷进入,便在院子的外围护栏上安置了电网,在无人居住期间通电以防窃贼。不料某日在附近游玩游客发现了此栋别墅,其中一位年轻人看到,别墅后十分欢喜,便攀爬护栏合影留念
某建设工程施工合同约定,合同工期为7个月,合同价款为5000万元。建设单位在申请领取施工许可证时,应当到位的建设资金原则上不得少于()万元。
某地上15层、地下1层的建筑,每层建筑面积为1500m2,建筑高度为50m,地上五层以上各层为办公区,五层设一多功能会议厅;地下一层层高4m,设置设备用房和歌舞厅。下列说法中,错误的有()。
我国公民道德建设的基本原则是()。
Howwouldthewomangohome?
PASSAGETHREEWhatdoes"Baedeker"mostprobablymean?
A.widerB.rapidlyC.satisfactoryD.biggerE.objectsF.genuinelyG.haveH.arisesI.possessJ.suddenlyK.availa
最新回复
(
0
)