首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)在(一∞,+∞)上连续,则下列命题正确的是
设f(x)在(一∞,+∞)上连续,则下列命题正确的是
admin
2019-04-09
77
问题
设f(x)在(一∞,+∞)上连续,则下列命题正确的是
选项
A、若f(x)为偶函数,则∫
-a
a
f(x)dx≠0.
B、 若f(x)为奇函数,则∫
-a
a
f(x)dx≠2∫
0
a
f(x)dx.
C、若f(x)为非奇非偶函数,则∫
-a
a
f(x)dx≠0.
D、若f(x)为以T为周期的周期函数,且是奇函数,则F(x)=∫
0
x
f(£)dt是以T为周期的周期函数.
答案
D
解析
由于f(x)=0既是偶函数又是奇函数,且∫
a
a
0dx=0,所以不选(A),(B).
若f(x)为非奇非偶函数,也可能有∫
-a
a
f(x)dx=0.例如
在(一∞,+∞)上为非奇非偶函数,但∫
-1
1
f(x)dx=一∫
-1
0
3x
2
dx+∫
0
1
dx=0,因此不选(C),由排除法应选(D).
事实上,利用“若f(x)为以T为周期的周期函数,则∫
a
a+T
f(x)dxa 1 的值与a无关”与奇函数的积分性质可得,
有
所以F(x)=∫
0
x
f(t)dt是以T为周期的周期函数.
转载请注明原文地址:https://kaotiyun.com/show/IpP4777K
0
考研数学三
相关试题推荐
设f(x)为连续函数,(1)证明:∫0π(sinx)dx=[∫0πinx]dx=πf(sinx)dx;(2)证明:∫02πf(|sinx|)dx=4f(sinx)dx;(3)求.
设的逆矩阵A-1的特征向量.求x,y,并求A-1对应的特征值μ.
若正项级数an与正项级数bn都收敛,证明下列级数收敛:
设X1,X2,…,Xn(n>2)为取自总体N(0,1)的简单随机样本,为样本均值,记Yi=Xi一,i=1,2,…,n。求:(Ⅰ)Yi的方差D(Yi),i=1,2,…,n;(Ⅱ)Yi与Yn的协方差Cov(Y1,Yn)。
两台同样的自动记录仪,每台无故障工作的时间服从参数为5的指数分布。首先开动其中一台,当其发生故障时停用,而另一台自行开动,试求两台记录仪无故障工作的总时间T的概率密度。
A,B,C三个随机事件必相互独立,如果它们满足条件()
已知在10件产品中有2件次品,在其中任取两次,做不放回抽样。求下列事件的概率:(Ⅰ)两件都是正品;(Ⅱ)两件都是次品;(Ⅲ)一件是正品,一件是次品;(Ⅳ)第二次取出的是次品。
若向量组α1,α2,α3,α4线性相关,且向量α4不可由向量组α1,α2,α3线性表示,则下列结论正确的是().
下列命题正确的是().
关于二次型f(x1,x2,x3)=x12+x22+x32+2x1x2+2x1x3+2x2x3,下列说法正确的是()
随机试题
2019年1月,甲公司与乙公司签订劳务派遣协议,派遣刘某到乙公司从事临时性工作。2019年5月,临时性工作结束,两公司未再给刘某安排工作,也未再向其支付任何报酬。2019年7月,刘某得知自2019年1月被派遣以来,两公司均未为其缴纳社会保险费,遂提出解除劳
下列治疗较为合理的是该患者不大可能出现的临床症状是
最能体现不伤害原则的是最能体现知情同意准则的是
营养调查中生化检查的目的是()[辽宁省2007年11月四级真题]
中医上将水果分为寒性水果和热性水果,下列选项属于寒性水果的有()。
中国人民政治协商会议是中国人民爱国统一战线的组织,是中国共产党领导的多党合作和政治协商的重要机构,也是中国政治生活中发扬社会主义民主的重要形式。中国人民政治协商会议的这一性质决定了其主要职能是()
WhathappenedinLondonafewmonthsago?
DOCUMENTS:FORGE::
DothefollowingstatementsagreewiththeclaimsofthewriterinReadingPassage2?Inboxes22-26onyouranswersheetwrite
A、Sandyisworkingonherlabreports.B、Sandyisbusywithherengagement.C、Lisamightbeabletohelp.D、Lisaisalwaysonth
最新回复
(
0
)