首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
[2007年] 二元函数f(x,y)在点(0,0)处可微的一个充分条件是( ).
[2007年] 二元函数f(x,y)在点(0,0)处可微的一个充分条件是( ).
admin
2021-01-19
22
问题
[2007年] 二元函数f(x,y)在点(0,0)处可微的一个充分条件是( ).
选项
A、
[f(x,y)一f(0,0)]=0
B、
C、
D、
[f′
x
(x,0)一f′
x
(0,0)]=0,且
[f′
y
(0,y)一f′
y
(0,0)]=0
答案
C
解析
解一 仅(C)入选.用排错法确定正确选项.选项(A)相当于已知f(x,y)在点(0,0)处连续,选项(B)表示一阶偏导数f′
x
(0,0),f′
y
(0,0)存在,但f(x,y)在(0,0)处连续或其一阶偏导数存在均不能保证f(x,y)在(0,0)处可徽,排除(A),(B).
选项(D)相当于已知两个一阶偏导数f′
x
(0,0),f′
y
(0,0)存在,但不能推导出两个一阶偏导数f′
x
(x,y),f′
y
(x,y)在点(0,0)处连续,因此不能保证f(x,y)在点(0,0)处可微.排除(D).
解二 用可微的定义1.4.1.1判别.若
=0,则
即f′
x
(0,0)=0.同理得f′
y
(0,0)=0,从而
根据可微的定义1.4.1.1知,函数f(x,y)在点(0,0)处可微,仅(C)入选.
转载请注明原文地址:https://kaotiyun.com/show/Iv84777K
0
考研数学二
相关试题推荐
设B≠O为三阶矩阵,且矩阵B的每个列向量为方程组的解,则k=_______,|B|=_______.
设三阶矩阵A,B满足关系A-1BA=6A+BA,且A=,则B=_________
二次型f(x1,x2,x3)=(a1x1+a2x2+a3x3)2的矩阵是______.
曲线y=x2+x(x<0)上曲率为的点的坐标是________。
设z=z(x,y)有连续的二阶偏导数并满足(Ⅰ)作变量替换u=3x+y,v=x+y,以u,v作为新的自变量,变换上述方程;(Ⅱ)求满足上述方程的z(x,y).
设曲线y=ax2(a≥0,常数a>0)与曲线y=1一x2交于点A,过坐标原点O和点A的直线与曲线y=ax2围成一平面图形D.求a的值,使V(a)为最大.
设求曲线y=f(x)与它所有水平渐近线及y轴围成图形的面积.
向量组β1,β2,…,βt可由向量组α1,α2,…,αs线性表出,设表出关系为[β1,β2,…,βt]=[α1,α2,…,αs][α1,α2,…,αs]C.若α1,α2,…,αs线性无关,证明:r(β1,β2,…,βt)=r(C).
有一平底容器,其内侧壁是由曲线x=φ(y)(y≥0)绕y轴旋转而成的旋转曲面,容器的底面圆的半径为2m。根据设计要求,当以3m3/min的速率向容器内注入液体时,液面的面积将以πm2/min的速率均匀扩大(假设注入液体前,容器内无液体)。求曲线x=φ(
随机试题
CO2气体保护焊时,产生的气孔主要是由于保护气层被破坏,使空气入侵而形成氮气
中唐新乐府运动的倡导者是()
唇裂是由于以下哪两种突起不能联合形成的
下列哪项是引起便血的小肠疾病
最常用的超临界流体是()。
背景某安装工程公司经过招投标、评标、决标,与某机场建设部门订立了新建航站楼弱电系统工程项目施工合同,同时某建筑企业承担了航站楼土建工程的建设任务。施工过程中,发生了如下事件:事件一:在施工过程中,为保证工程质量,安装公司改进了部分线缆的接续工艺,人工费
With950millionpeople,IndiarankssecondtoChinaamongthemostpopulouscountries.ButsinceChina【B1】______afamilyplan
在UML中,(46)把活动图中的活动划分为若干组,并将划分的组指定给对象,这些对象必须履行该组所包括的活动,它能够明确地表示哪些活动是由哪些对象完成的。
TheproportionofworkscutforthecinemainBritaindroppedfrom40percentwhenIjoinedtheBBFCin1975tolessthan4per
A、Sydney.B、Paris.C、Tokyo.D、NewYorkCity.C短文提到,新加坡取代去年位于榜首的东京,成为生活成本最高的城市,故选C。
最新回复
(
0
)