首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A为三阶实对称矩阵,且存在正交矩阵Q=,使得QTAQ=,又令B=A2+2E,求矩阵B.
设A为三阶实对称矩阵,且存在正交矩阵Q=,使得QTAQ=,又令B=A2+2E,求矩阵B.
admin
2021-01-14
58
问题
设A为三阶实对称矩阵,且存在正交矩阵Q=
,使得Q
T
AQ=
,又令B=A
2
+2E,求矩阵B.
选项
答案
由Q
T
AQ=[*] 得A的特征值为λ
1
=2,λ
2
=一1,λ
3
=1,且λ
1
=2对应的特征向量为ξ
1
=[*] 由A
T
=A得B
T
=(A
2
+2E)
T
=(A
2
)
T
+2E=A
T
+2E=B,即B为实对称矩阵. 显然B的特征值为λ
1
=6,λ
2
=λ
3
=3,且B相应于特征值λ
1
=6的特征向量为ξ
1
=[*] 设B的相应于λ
2
=λ
3
=3的特征向量为ξ=[*] 因为实对称矩阵不同特征值对应的特征向量正交,所以ξ
1
T
=0,即x
1
+x
2
+x
3
=0, 于是B的相应于特征值λ
2
=λ
3
=3的线性无关的特征向量为ξ
2
=[*] [*]
解析
转载请注明原文地址:https://kaotiyun.com/show/Ix84777K
0
考研数学二
相关试题推荐
设f(lnx)=,计算∫f(x)dx。
(2004年)设z=f(χ2-y2,eχy),其中f具有连续二阶偏导数,求
(Ⅰ)证明方程xn+xn一1+…+x=1(n为大于1的整数)在区间(,1)内有且仅有一个实根;(Ⅱ)记(Ⅰ)中的实根为xn,证明xn存在,并求此极限.
已知β可用α1,α2,…,αs线性表示,但不可用α1,α2,…,αs-1线性表示.证明:(1)αs不可用α1,α2,…,αs-1线性表示;(2)αs可用α1,α2,…,αs-1,β线性表示.
设函数y=y(x)在(一∞,+∞)内具有二阶导数,且y’≠0,x=x(y)是y=y(x)的反函数。求变换后的微分方程满足初始条件y(0)=0,y’(0)=的特解。
计算定积分
求下列幂级数的收敛半径和收敛域.
估计下列积分值:
设x→a时φ(x)是x一a的n阶无穷小,u→0时f(u)是u的m阶无穷小,则x→a时f[φ(x)]是x—a的________阶无穷小.
设f(x)∈C[a,b],在(a,b)内二阶可导,且f’’(x)≥0,φ(x)是区间[a,b]上的非负连续函数,且∫ab(x)dx=1.证明:∫abf(x)φ(c)dx≥f[∫abxφ(x)dx].
随机试题
国有土地短期租赁年限一般不超过()年。
前照灯的灯泡中有_______和_______两根灯丝,远光灯丝用于夜间照明道路;近光灯丝用于两车交会,使用中通过变光开关进行变换。
投资盘点的核心人员应当是
学生,19岁。右股骨下端疼痛1个月,夜间尤甚。查体:右股骨下端偏内侧局限性隆起,皮温略高,皮肤浅静脉怒张,明显压痛,膝关节运动受限。x线片示股骨下端干骺端溶骨性骨破坏,边界不清,可见Codman三角。诊断为
(2007)一台三相绕线转子异步电动机,额定频率fN=50Hz,额定转速nN=980r/min,当定子接到额定电压,转子不转且开路时的每相感应电动势为110V,那么电动机在额定运行时转子每相感应电动势E2为()。
混凝土的耐久性指标应根据()确定。
混凝土配合比1:2.89:5.62:0.81是指()的质量比。
某文具厂计划每周生产A、B两款文件夹共9000个,其中A款文件夹每个生产成本为1.6元,售价为2.3元,B款文件夹每个生产成本为2元,售价为3元。假设该厂每周在两款文件夹上投入的总生产成本不高于15000元,则要使利润最大,该
Thetwobooks,FinalExam:ASurgeon’sReflectionsonMortalitybyPaulineChen,andBetter:ASurgeon’sNotesonPerformanceby
High-qualitycustomerserviceispreached(宣扬)bymany,butactuallykeepingcustomershappyiseasier【C1】______thandone.Sho
最新回复
(
0
)