首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)在闭区间[0,1]上连续,且∫01f(x)dx=0,∫01exf(x)dx=0.证明在开区间(0,1)内存在两个不同的ξ1与ξ2,使f(ξ1)=0,f(ξ2)=0.
设f(x)在闭区间[0,1]上连续,且∫01f(x)dx=0,∫01exf(x)dx=0.证明在开区间(0,1)内存在两个不同的ξ1与ξ2,使f(ξ1)=0,f(ξ2)=0.
admin
2018-07-23
62
问题
设f(x)在闭区间[0,1]上连续,且∫
0
1
f(x)dx=0,∫
0
1
e
x
f(x)dx=0.证明在开区间(0,1)内存在两个不同的ξ
1
与ξ
2
,使f(ξ
1
)=0,f(ξ
2
)=0.
选项
答案
令F(x)=∫
0
x
f(t)dt,有Fˊ(x)=f(x),F(0)=0,F(1)=0,则 0=∫
0
1
e
x
f(x)dx=∫
0
1
e
x
dF(x)=e
x
F(x)|
0
1
-∫
0
1
F(x)e
x
dx =-∫
0
1
F(x)e
x
dx 所以存在ξ∈(0,1),使F(ξ)e
ξ
=0.但e
ξ
≠0,所以F(ξ)=0.由于已有 F(0)=0,F(1)=0. 所以根据罗尔定理知,存在ξ
1
∈(0,ξ),ξ
2
∈(ξ,1),使 Fˊ(ξ
1
)=0,Fˊ(ξ
2
)=0. 即f(ξ
1
)=0,f(ξ
2
)=0,其中ξ
1
∈(0,ξ),ξ
2
∈(ξ,1),证毕.
解析
转载请注明原文地址:https://kaotiyun.com/show/Izj4777K
0
考研数学二
相关试题推荐
判别二元函数z=ln(x2-y2)与z=ln(x+y)+ln(x-y)是否为同一函数,并说明理由.
已知y=x/lnx是微分方程y’=y/x+φ(x/y)的解,则φ(x/y)的表达式为
已知抛物线y=ax2+bx+c,在其上的点P(1,2)的曲率圆的方程为求常数a,b,c的值.
[*]
非齐次线性方程组Ax=b中未知量个数为n,方程个数为m,系数矩阵A的秩为r,则
若f(x)不变号,且曲线y=f(x)在点(1,1)处的曲率圆为x2+y2=2,则函数f(x)在区间(1,2)内
设非齐次线性方程组有三个线性无关解α1,α2,α3,(Ⅰ)证明系数矩阵的秩r(A)=2;(Ⅱ)求常数a,b及通解.
变换二次积分的积分次序:
已知ξ=是矩阵A=的一个特征向量.(1)试确定a,b的值及特征向量考所对应的特征值;(2)问A能否相似于对角阵?说明理由.
[2018年]下列函数中,在x=0处不可导的是().
随机试题
金属在固态下,随温度变化由一种晶格转变为另一种晶格的现象,称为()。
Itisawisefatherthatknowshisownchild,buttodayamancanboosthispaternal(fatherly)wisdom—oratleastconfirmtha
老年抑郁症的常见负性生活事件是
患者,男,33岁。腹股沟斜疝术后取仰卧位,腘窝下垫枕,最主要目的是
按规定.各会计核算单位使用定点开发的专用会计核算软件之前,使用的软件必须经过()。
个人从公开发行和转让市场取得的上市公司股票,持股期限在1个月以内的,其股息红利所得按()计人应纳税所得额。
2006年北京某基层社区设立社区卫生服务中心社区居民对卫生服务中心为谁服务存在不问想法。您认为其服务对象应是:()。
根据绩效考评的对象不同,绩效考评可分为()。
“外行看热闹,内行看门道”体现的是知觉的()。
包括在班杜拉总结的学习过程的环节是()。
最新回复
(
0
)