首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)在闭区间[0,1]上连续,且∫01f(x)dx=0,∫01exf(x)dx=0.证明在开区间(0,1)内存在两个不同的ξ1与ξ2,使f(ξ1)=0,f(ξ2)=0.
设f(x)在闭区间[0,1]上连续,且∫01f(x)dx=0,∫01exf(x)dx=0.证明在开区间(0,1)内存在两个不同的ξ1与ξ2,使f(ξ1)=0,f(ξ2)=0.
admin
2018-07-23
97
问题
设f(x)在闭区间[0,1]上连续,且∫
0
1
f(x)dx=0,∫
0
1
e
x
f(x)dx=0.证明在开区间(0,1)内存在两个不同的ξ
1
与ξ
2
,使f(ξ
1
)=0,f(ξ
2
)=0.
选项
答案
令F(x)=∫
0
x
f(t)dt,有Fˊ(x)=f(x),F(0)=0,F(1)=0,则 0=∫
0
1
e
x
f(x)dx=∫
0
1
e
x
dF(x)=e
x
F(x)|
0
1
-∫
0
1
F(x)e
x
dx =-∫
0
1
F(x)e
x
dx 所以存在ξ∈(0,1),使F(ξ)e
ξ
=0.但e
ξ
≠0,所以F(ξ)=0.由于已有 F(0)=0,F(1)=0. 所以根据罗尔定理知,存在ξ
1
∈(0,ξ),ξ
2
∈(ξ,1),使 Fˊ(ξ
1
)=0,Fˊ(ξ
2
)=0. 即f(ξ
1
)=0,f(ξ
2
)=0,其中ξ
1
∈(0,ξ),ξ
2
∈(ξ,1),证毕.
解析
转载请注明原文地址:https://kaotiyun.com/show/Izj4777K
0
考研数学二
相关试题推荐
2π
设(a为常数),则
已知α1,α2,α3,α4是线性方程组Ax=0的一个基础解系,若β1=α1+tα2,β2=α2+tα3,β3=α3+tα4,β4=α4+tα1,讨论实数t满足什么关系时,β1,β2,β3,β4也是Ax=0的一个基础解系。
设函数y=f(x)由方程e2x+y-cos(xy)=e-1所确定,则曲线y=f(x)在点(0,1)处的法线方程为____________.
f(x)在区间[ab]上连续,在(a,b)内可导,且,求证:在(a,b)内至少存在一点ξ,使f’(ξ)=0.
设a1,a2,a3是4元非齐次线性方程组Ax=b的三个解向量,且秩(A)=3,a1=(1,2,3,4)T,a2+a3=(0,1,2,3)T,c表示任意常数,则线性方程组Ax=b的通解x=
证明:当0<a<b<π时,bsinb+2cosb+πb>asina+2cosa+πa.
三阶常系数线性齐次微分方程y"’=2y"+y’-2y=0的通解为y=________.
设f(x)在[a,b]上有定义,M>0且对任意的x,y∈[a,b],有|f(x)-f(y)|≤M|x-y|k.证明:当k>0时,f(x)在[a,b]上连续;
设微分方程作自变量变换t=lnx以及因变量变换,请将原微分方程变换为z关于t的微分方程;
随机试题
ReadcarefullythefollowingexcerptonChina’sstricterrulesforlivestreamingandthenwriteyourresponseinNOLESSTHAN2
关于小儿正常心率的波动范围,下列哪项是错误的
租赁设备租金的计算方法主要有附加率法和( )。
根据增值税法律制度的规定,下列关于增值税专用发票基本联次中记账联的表述中,正确的是()。
下列作家与作品对应有误的一项是()。
根据《中华人民共和国国家赔偿法》的规定,下列情况中行政机关应当赔偿的是:
简述罗马共和国早期平民反对贵族的斗争。
任何时候都要把人民利益放在第一位,始终与人民心连心、同呼吸、共命运,始终依靠人民推动历史前进。这一重要论述提示了中国共产党开展一切执政活动的依靠力量和评价标准。党的十八大指出,检验党的一切执政活动的最高标准是
检索至少有一名职工信息的“仓库号”及仓库的“所在地”和“人数”,正确的SQL命令是()。仓库(仓库号C(3)、所在地C(8)、人数N(2))职工(仓库号C(3)、职工号C(2)、姓名C(8)、工资I)
A、Pirates.B、Sailors.C、Manufactures.D、Merchants.D这是一道细节题,问题是:最早的保险合同是为保护谁而设计的。短文提到,早期保险为商人进行航运提供了保护,因此选D。
最新回复
(
0
)