首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)在闭区间[0,1]上连续,且∫01f(x)dx=0,∫01exf(x)dx=0.证明在开区间(0,1)内存在两个不同的ξ1与ξ2,使f(ξ1)=0,f(ξ2)=0.
设f(x)在闭区间[0,1]上连续,且∫01f(x)dx=0,∫01exf(x)dx=0.证明在开区间(0,1)内存在两个不同的ξ1与ξ2,使f(ξ1)=0,f(ξ2)=0.
admin
2018-07-23
51
问题
设f(x)在闭区间[0,1]上连续,且∫
0
1
f(x)dx=0,∫
0
1
e
x
f(x)dx=0.证明在开区间(0,1)内存在两个不同的ξ
1
与ξ
2
,使f(ξ
1
)=0,f(ξ
2
)=0.
选项
答案
令F(x)=∫
0
x
f(t)dt,有Fˊ(x)=f(x),F(0)=0,F(1)=0,则 0=∫
0
1
e
x
f(x)dx=∫
0
1
e
x
dF(x)=e
x
F(x)|
0
1
-∫
0
1
F(x)e
x
dx =-∫
0
1
F(x)e
x
dx 所以存在ξ∈(0,1),使F(ξ)e
ξ
=0.但e
ξ
≠0,所以F(ξ)=0.由于已有 F(0)=0,F(1)=0. 所以根据罗尔定理知,存在ξ
1
∈(0,ξ),ξ
2
∈(ξ,1),使 Fˊ(ξ
1
)=0,Fˊ(ξ
2
)=0. 即f(ξ
1
)=0,f(ξ
2
)=0,其中ξ
1
∈(0,ξ),ξ
2
∈(ξ,1),证毕.
解析
转载请注明原文地址:https://kaotiyun.com/show/Izj4777K
0
考研数学二
相关试题推荐
[*]
[*]
A、 B、 C、 D、 A
设其中E是n阶单位阵,α=[a1,a2,…,an]T≠0.证明Aα,α线性相关.
设B是2阶矩阵,且满足AB=B,k1,k2是任意常数,则B=
设,试补充定义f(1)使得f(x)在上连续.
(I)由题设,AX=β的解不唯一,从而其系数矩阵的秩与增广矩阵阵的秩相同但小于3.对增广矩阵做初等行变换,得[*]
设向量组α1,α2,α3线性无关,向量β1可由α1,α2,α3线性表示,而向量β2不能南α1,α2,α3线性表示,则对于任意常数k,必有
设D是xOy平面上以(1,1),(-1,1),(-1,-1)为顶点的三角形区域,D1为区域D位于第一象限的部分,则(xy+cosxsiny)dσ等于().
求下列可降阶的高阶微分方程的通解.(1)x2y”=(y’)2+2xy’;(2)(1+x)y”+y’=ln(x+1);(3)1+yy”+(y’)2=0;(4)y”=1+(y’)2.
随机试题
A、张口受限,咀嚼时痛,口内上颌结节后方有压痛B、张口受限,吞咽时痛,腭垂偏向健侧C、张口受限,咀嚼时痛加剧,并向耳颞部反射D、张口极度困难,患侧下颌支后缘内侧皮肤肿胀并有深部压痛E、牙关紧闭,颈强直下列间隙感染临床表现
我国的《传染病防治法》不适用于
由于(),导致项目的实际施工情况与招标投标时的情况不一致,出现工程变更。工程变更包括()。
护面墙的类型有()。
不论是盈利,还是亏损,都是财务成果。()
心理诊断的主要方法一般不包括()。
有效和冗长是语言体系的一个自相矛盾的特性,然而,当它们一块使用时,能增加交流的有效性和可信赖性。如果某一种口语非常地有效,那么它的每一个基本音素的所有可能排列都能组成一可被理解的单词。但是,如果人类的听觉系统不是一个完善的声音接收器,那么一种口语的基本音素
计算行列式
子类的对象拥有其超类的对象的全部属性的方法,称为子类对超类的______。
Atonetimefewjudgeswerefriendlytounions,asdemonstratedbyasteadystreamofdecisions______strikes,boycotts,picketl
最新回复
(
0
)