首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设奇函数f(x)在[一1,1]上具有二阶导数,且f(1)=1,证明: 存在ξ∈(0,1),使得f'(ξ)=1;
设奇函数f(x)在[一1,1]上具有二阶导数,且f(1)=1,证明: 存在ξ∈(0,1),使得f'(ξ)=1;
admin
2019-01-19
36
问题
设奇函数f(x)在[一1,1]上具有二阶导数,且f(1)=1,证明:
存在ξ∈(0,1),使得f'(ξ)=1;
选项
答案
令F(x)=f(x)一x,F(0)=f(0)=0,F(1)=f(1)一1=0, 则由罗尔定理知,存在ξ∈(0,1)使得F'(ξ)=0,即f'(ξ)=1。
解析
转载请注明原文地址:https://kaotiyun.com/show/J1P4777K
0
考研数学三
相关试题推荐
设随机变量X与Y相互独立,且X服从正态分布N(0.1),Y在区间[一1.3]上服从均匀分布,则概率P{max(X,Y)≥0}=_________.
某厂家生产的一种产品同时在两个市场销售,售价分别为p1和p2;销售量分别为q1和q2;需求函数分别为q1=24—0.2p1,q2=10一0.05p1,总成本函数为C=35+40(q1+q2).试问厂家如何确定两个市场的售价,能使其获得的总利润最大?
以y=C1cosx+C2sinx+e2x(其中C1,C2为任意常数)为通解的二阶线性常系数非齐次微分方程是_________.
设总体X~N(0,σ2),X1,X2,…,X9为来自X的简单随机样本,试确定σ的值,使得概率P(1<.
微分方程F(x,y4,y’,(y")2)=0的通解中应含有()个任意常数.
设n阶方阵A≠0,满足Am=0(其中m为某正整数).(1)求A的特征值.(2)证明:A不相似于对角矩阵.(3)证明:|E+A|=1.(4)若方阵B满足AB=BA,证明:|A+B|=|B|.
设A为m×n矩阵,B是n×m矩阵,证明:AB和BA有相同的非零特征值.
已知A,B均是m×n矩阵,r(A)=n一s,r(B)=n一r,且r+s>n,证明:线性方程组AX=0,BX=0有非零公共解.
设随机变量X与Y相互独立,且均服从(一1,1)上的均匀分布.(1)试求X和Y的联合分布函数;(2)试求Z=X+Y的密度函数.
二次型f(x1,x2,x3)=5x12+5x22+cx32一2x1x2—6x2x3+6x1x3的秩为2,求c及此二次型的规范形,并写出相应的变换.
随机试题
依据树脂的化学组成分类,属于油胶树脂的药材有()。
以下实验或操作能达到目的的是()。
Mycar______soIhadtocomebybus.
()是集装系统的支柱。
以下属于表现主义代表性作曲家的是()。
已知盐水若干克,第一次加入一定量的水后,盐水浓度为3%;第二次加入同样多的水后,浓度变为2%,那么第三次加入同样多的水后盐水的浓度为()。
酝酿效应是指当一个人长时间致力于解决某一问题而又百思不得其解时,如果他暂停下来去做别的事情,一段时间之后,他可能会忽然想到解决的办法。下列属于酝酿效应的一项是()。
葡聚糖是现在人气极高,食品科学和工业界很看好的一种可溶性纤维。某些葡聚糖也似乎对于增强免疫力更有效果——但是任何的膳食纤维都会对健康大有裨益。与其花大钱去买“特别的”“增强免疫力”的纤维,多吃一些经济实惠的富含膳食纤维的食物是不是更划算?根据上文推断,作者
IhaveneverbeentoShanghai,butit’stheplace______.
A、Bycar.B、Byplane.C、Bytrain.D、Bybus.A
最新回复
(
0
)