首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设α1,α2,…,αs均为n维列向量,下列结论不正确的是( )
设α1,α2,…,αs均为n维列向量,下列结论不正确的是( )
admin
2019-12-26
29
问题
设α
1
,α
2
,…,α
s
均为n维列向量,下列结论不正确的是( )
选项
A、若对于任意一组不全为零的数k
1
,k
2
,…,k
s
,都有k
1
α
1
+k
2
α
2
+…+k
s
α
s
≠0,则α
1
,α
2
,…,α
s
线性无关.
B、若α
1
,α
2
,…,α
s
线性相关,则对任意一组不全为零的数k
1
,k
2
,…,k
s
,有k
1
α
1
+k
2
α
2
+…+k
s
α
s
=0.
C、α
1
,α
2
,…,α
s
线性无关的充分必要条件是此向量组的秩为s.
D、α
1
,α
2
,…,α
s
线性无关的必要条件是其中任意两个向量线性无关.
答案
B
解析
由向量组线性相关的定义知,向量组α
1
,α
2
,…,α
s
线性相关
存在一组不全为零的数k
1
,k
2
,…,k
s
使k
1
α
1
+k
2
α
2
+…+k
s
α
s
=0,这里要求的是“存在”,不是“任意”,故(B)选项的结论不正确.应选(B).
向量组α
1
,α
2
,…,α
s
线性无关
方程组x
1
α
1
+x
2
α
2
+…+x
s
α
s
=0只有零解
矩阵的秩r(α
1
,α
2
,…,α
s
)=s.所以(C)的结论正确,不应选.
向量组α
1
,α
2
,…,α
s
线性无关
方程组x
1
α
1
+x
2
α
2
+…+x
s
α
s
=0只有零解
对于任意一组不全为零的数k
1
,k
2
,…,k
s
,都有k
1
α
1
+k
2
α
2
+…+k
s
α
s
≠0,所以(A)的结论正确,不应选.
由于线性无关向量组的任意部分组必线性无关,所以(D)的结论正确.不应选.
转载请注明原文地址:https://kaotiyun.com/show/JGD4777K
0
考研数学三
相关试题推荐
设α1=(1,一1,2,4),α2=(0,3,1,2),α3=(3,0,7,14),α4=(1,一2,2,0),α5=(2,1,5,10).①求r(α1,α2,α3,α4,α5).②求一个最大线性无关组,并且把其余向量用它线性表示.
设α1,α2,…,αr和β1,β2,…,βs是两个线性无关的n维向量.证明:向量组{α1,α2,…,αr;β1,β2,…,βs}线性相关存在非零向量r,它既可用α1,α2,…,αr线性表示,又可用β1,β2,…,βs线性表示.
已知总体X与Y相互独立且都服从标准正态分布,X1,…,X8和Y1,…,Y9是分别来自总体X与Y的两个简单随机样本,其均值分别为求证:服从参数为15的t分布.
在“充分而非必要”、“必要而非充分”、“充分必要”三者中选择一个正确的填入下列空格内(1)函数f(x)在[a,b]上连续是f(x)在[a,b]上存在原函数的________条件;(2)函数f(x)在[a,b]上有界是f(x)在[a,b]上可积的____
已知f(x)的一个原函数为(1+sinx)lnx,求∫xf’(x)dx.
一平面经过原点及(6,-3,2),且与平面Ⅱ:4x-y+2z=8垂直,则此平面方程为______________.
已知A是四阶矩阵,α1,α2是矩阵A属于特征值λ=2的线性无关的特征向量,若A的每一个特征向量均可由α1,α2线性表出,那么行列式|A+E|的值为__________.
若曲线y=x3+ax2+bx+1有拐点(一1,0),则b=_________.
设的值为______.
若α1,α2,α3是三维线性无关的列向量,A是三阶方阵,且Aα1=α1+α2,Aα=α2+α3,Aα3=α3+α1,则|A|=.
随机试题
措施项目费的计算方法中,具有简单明了,公式的科学性、准确性难以把握等特点的方法是()。
下列选项中,属于基本养老保险的是()。
小脑幕切迹疝出现患侧瞳孔散大,是由于患侧哪一支颅神经受压
口蹄疫病毒的主要传播途径是
已知数字信号A和数字信号B的波形如图所示,则数字信号F=A+B的波形为()。
下列属于视频输入设备的有()。
下列对临海古长城的描述中,正确的是()。
应聘者:招聘会:招聘者
中国梦不仅在国内引发强烈共鸣,而且在国际社会也产生了强烈反响。实现中国梦任重而道远,需要我们锲而不舍、驰而不息的艰苦努力。实现中国梦必须
He(work)______inthatcityforeightyearsbeforehemovedhere.
最新回复
(
0
)