首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
[2015年] 设向量组α1,α2,α3是三维向量空间R3的一个基,β1=2α1+2kα3,β2=2α2,β3=α1+(k+1)α3. 证明向量组β1,β2,β3为R3的一个基;
[2015年] 设向量组α1,α2,α3是三维向量空间R3的一个基,β1=2α1+2kα3,β2=2α2,β3=α1+(k+1)α3. 证明向量组β1,β2,β3为R3的一个基;
admin
2019-04-08
51
问题
[2015年] 设向量组α
1
,α
2
,α
3
是三维向量空间R
3
的一个基,β
1
=2α
1
+2kα
3
,β
2
=2α
2
,β
3
=α
1
+(k+1)α
3
.
证明向量组β
1
,β
2
,β
3
为R
3
的一个基;
选项
答案
由题设有 [β
1
,β
2
,β
3
]=[α
1
,α
2
,α
3
][*] 因[*],且α
1
,α
2
,α
3
线性无关,故β
1
,β
2
,β
3
线性无关,因而β
1
,β
2
,β
3
为R
3
的一个基.
解析
转载请注明原文地址:https://kaotiyun.com/show/JJ04777K
0
考研数学一
相关试题推荐
(2007年)设幂级数内收敛,其和函数y(x)满足y"一2xy′一4y=0,y(0)=0,y′(0)=1。(I)证明n=1,2,…;(Ⅱ)求y(x)的表达式。
(2004年)设有方程xn+nx一1=0,其中n为正整数,证明此方程存在唯一正实根xn,并证明当α>1时,级数收敛。
(2005年)已知函数f(x)在[0,1]上连续,在(0,1)内可导,且f(0)=0,f(1)=1。证明:(I)存在ξ∈(0,1),使得f(ξ)=1一ξ;(Ⅱ)存在两个不同的点η,ζ∈(0,1),使得f′(η)f′(ζ)=1。
(2017年)设函数f(x)在区间[0,1]上具有二阶导数,且f(1)>0,证明:(I)方程f(x)=0在区间(0,1)内至少存在一个实根;(11)方程f(x)f(x)+[f′(x)]2=0在区间(0,1)内至少存在两个不同的实根。
(2005年)设函数单位向量则
证明n阶矩阵相似。
设矩阵则A3的秩为______。
设A为m阶实对称矩阵且正定,B为m×n实矩阵,BT为B的转置矩阵,试证:BTAB为正定矩阵的充分必要条件是B的秩r(B)=n。
随机试题
毛泽东在《论十大关系》中论述的第一大关系是()
A、≤10cfu/m3B、≤100cfu/m3C、≤200cfu/m3D、≤500cfu/m3E、≥500cfu/m3婴儿室要求空气中的细菌总数
30岁,G2P1,宫内孕38周,因“无诱因胸闷、憋气、不能平卧3天”入院。患者孕期各项检查正常,4年前足月顺产。查体:BP125/80mmHg,心率130次/分,早搏2次/分,呼吸23次/分,半卧位,颈静脉轻度怒张,双肺散在细小湿啰音,胎心160次/分,肝
A.主动脉瓣关闭不全B.心肌病C.心肌梗死D.高血压E.糖尿病引起心室后负荷增加的是
患者胸闷隐痛,时作时止,心悸气短,倦怠懒言,面色少华,头晕日眩,遇劳则甚,舌偏红或有齿印,脉细弱无力或结代。治疗应首选
B细胞分化成熟的场所是
某企业拟进行一项存在一定风险的完整工业项目投资,有甲、乙两个方案可供选择:已知甲方案净现值的期望值为1000万元,标准差为300万元;乙方案净现值的期望值为1200万元,标准差为330万元。下列结论中正确的是()。
新课程改革的理论基础不包括()。
(2011下项管)以下关于复杂项目管理的描述中,错误的是______。
DavidCameronhasnoticedthathealthandsafetyregulationsstopschoolstakingchildrenoutonfieldtrips,outdooractivitie
最新回复
(
0
)