首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知3阶矩阵A的第一行是(a,b,c),a,b,C不全为零,矩阵(k为常数),且AB=0,求线性方程组Ax=0的通解.
已知3阶矩阵A的第一行是(a,b,c),a,b,C不全为零,矩阵(k为常数),且AB=0,求线性方程组Ax=0的通解.
admin
2018-11-11
81
问题
已知3阶矩阵A的第一行是(a,b,c),a,b,C不全为零,矩阵
(k为常数),且AB=0,求线性方程组Ax=0的通解.
选项
答案
由于AB=O,故r(A)+r(B)≤3,又由a,b,c不全为零,可知r(A)≥1.当k≠9时,r(B)=2,于是r(A)=1;当k=9时,r(B)=1,于是r(A)=1或r(A)=2. 对于k≠9,由AB=O可得[*] 由于η
1
=(1,2,3)
T
,η
2
=(3,6,k)
T
线性无关,故η
1
,η
2
为Ax=0的一个基础解系,于是Ax=0的通解为x=x
1
η
1
+c
2
η
2
,其中c
1
,c
2
为任意常数. 对于k=9,分别就r(A)=2和r(A)=1进行讨论.如果r(A)=2,则Ax=0的基础解系由一个向量构成. 又因为[*] 所以Ax=0的通解为x=c
1
(1,2,3)
T
,其中c
1
为任意常数.如果r(A)=1,则Ax=0的基础解系由两个向量构成. 又因为A的第一行为(a,b,c)且a,b,c不全为零,所以Ax=0等价于ax
1
+bx
2
+cx
3
=0,不妨设a≠0,η
1
=(一b,a,0)
T
,η
2
=(一c,0,a)
T
是Ax=0的两个线性无关的解,故Ax=0的通解为x=c
4
η
4
+c
5
η
5
,其中c
4
,c
5
为任意常数.
解析
本题考查抽象齐次线性方程组的求解问题.主要是将矩阵方程转化成线性方程组.
并注意运用AB=O,则r(A)+r(B)≤n.未知数的个数(n)一系数矩阵的秩r(A)=基础解系解向量的个数.齐次线性方程组通解的结构,若Ax=0的系数矩阵A的秩r(A)=r,则通解x=k
1
ξ
1
+…+k
2
ξ
2
…k
n-r
ξ
n-r
….
转载请注明原文地址:https://kaotiyun.com/show/JRj4777K
0
考研数学二
相关试题推荐
设(x,y)是平面区域D={(x,y)|x|<1,|y|<1}上的随机点.求关于t的方程t2+xt+y=0有两个正实根的概率.
已知A,B是任意两个随机事件,则p=P{(A∪B)(A∪)}=__________.
计算其中L是双纽线(x2+y2)2=a(x2一y2)(a>0).
f(x1,x2,x3)=5x12+5x22+cx32一2x1x2+6x1x3—6x2x3的秩为2.求参数c及此二次型对应矩阵的特征值;
已知非齐次线性方程组554有3个线性无关的解,求a,b的值及方程组的通解.
设线性非齐次方程组Ax=(α1,α2,α3,α4)x=α5有通解k(一1,2,0,3)T+(2,一3,1,5)T.求方程组(α1,α2,α3,α4,α5)x=α5的通解.
设当实数a为何值时,方程组Ax=β有无穷多解,并求其通解.
设函数f(x)在(一∞,+∞)上有定义,在区间[0,2]上,f(x)=x(x2一4),若对任意的x都满足f(x)=kf(x+2),其中k为常数.写出f(x)在[一2,2]上的表达式;
设f(x)在[a,b]上有二阶连续导数,证明
证明:连续函数取绝对值后函数仍保持连续性,举例说明可导函数取绝对值不一定保持可导性.
随机试题
当事人在庭前证据交换过程中没有争议并记录在卷的证据,经审判人员在庭审中说明后,可以作为认定案件事实的依据。()
胶粘剂必须在环氧粉末()过程中完成涂覆,以保证环氧层和胶粘剂层粘接良好。
援玉袍兮击鸣鼓。援:
A.头孢他啶B.克拉维酸C.万古霉素D.羧苄西林E.头孢曲松治疗严重铜绿假单胞茵感染应选用
根据《中共中央国务院关于深化医疗卫生体制改革的意见》,基本医疗卫生制度的主要内容不包括
法院审理过程中,被告人赵某在最后陈述时,以审判长数次打断其发言为理由申请更换审判长。对于这一申请,下列哪一说法是正确的?(2013年卷二28题)
下列资产损失不属于以清单申报形式申报扣除的是()。
空白旅行证必须和护照复印件及所在国警方出具的()丢失证明共同使用。
Onethirdofthepopulationhere______workers.
寓意
最新回复
(
0
)