累次积分∫01dx∫x1f(x,y)dy+∫12dy∫12-yf(x,y)dx可写成( )

admin2019-08-12  17

问题 累次积分∫01dx∫x1f(x,y)dy+∫12dy∫12-yf(x,y)dx可写成(    )

选项 A、∫02-xdx∫x2-xf(x,y)dy.   
B、∫01dy∫02-yf(x,y)dx.
C、∫01dx∫x2-yf(x,y)dy   
D、∫01dy∫y2-yf(x,y)dx.

答案C

解析 原积分域为直线y=x,x+y=2,与y轴围成的三角形区域,故选C.
转载请注明原文地址:https://kaotiyun.com/show/JSN4777K
0

最新回复(0)