首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A为n阶非零矩阵,E为n阶单位矩阵,若A3=O,则( )
设A为n阶非零矩阵,E为n阶单位矩阵,若A3=O,则( )
admin
2021-02-25
41
问题
设A为n阶非零矩阵,E为n阶单位矩阵,若A
3
=O,则( )
选项
A、E-A不可逆,E+A不可逆
B、E-A不可逆,E+A可逆
C、E-A可逆,E+A也可逆
D、E-A可逆,E+A不可逆
答案
C
解析
本题考查逆矩阵的概念及性质,抽象矩阵求逆一般从定义出发.
解法1:由于(E-A)(E+A+A
2
)=E,从而E-A可逆,同理(E+A)(E-A+A
2
)=E,从而E+A可逆.故选C.
解法2:由于A
3
=O,所以A的特征值都是0,因而E-A,E+A都可逆,故选C.
转载请注明原文地址:https://kaotiyun.com/show/JZ84777K
0
考研数学二
相关试题推荐
设A,B为三阶矩阵且A不可逆,又AB+2B=O且r(B)=2,则|A+4E|=().
设A是3阶矩阵,特征值为1,一1,一2,则下列矩阵中可逆的是
若三阶方阵,试求秩(A).
设f(x)在[a,b]上连续,在(a,b)内可导,且试证:对任意实数k,在(a,b)内存在一点ξ,使得
已知向量组α1,α2,α3和β1,β2,β3,β4都是4维实向量,其中r(α1,α2,α3)=2,r(β1,β2,β3,β4)>1,并且每个βi与α1,α2,α3都正交.则r(β1,β2,β3,β4)=
设三阶矩阵A的特征值为λ1=-1,λ2=,其对应的特征向量为α1,α2,α3,令P=(2α3,-3α1,-α2),则P-1(A-1+2E)P=________
设三阶方阵A,B满足A-1BA=6A+BA,且A=,则B=________。
已知4阶方阵A=[α1,α2,α3,α4],α1,α2,α3,α4均为4维列向量,其中α1,α2线性无关,若β=α1+2α2一α3=α1+α2+α3+α4=α1+3α2+α3+2α4,则Ax=β的通解为____________.
随机试题
符合健康系统模式对“一级预防”阐述的是
麻疹好发年龄是
女,18岁,怕热、易饥、多汗2个月,甲状腺Ⅰ°肿大,心率120次/分,甲状腺摄131I率4小时60%,24小时55%,血T3>4μmol/L,T4216μmol/L,TSH<0.5,TRH奋试验无反应。最佳治疗方案为
居民消费价格指数用()表示。
城市经济基础理论将城市经济分成()两个部分。
一个著名的旅游城市,每年都接待许多中外旅客。在游览风景名胜的路上,导游小姐总在几个工艺品加工厂停车,劝大家去厂里参观,而且说买不买都没有关系。为此,一些游客常有怨言,但此种现象仍在继续,甚至一年胜似一年。以下哪项最不可能是造成以上现象的原因?()
叶圣陶、郑振铎等都是江浙人,有着江浙知识分子特有的理性和宽容。他们像朱自清一样,都是新文学的热心鼓吹者,写得一手漂亮的白话散文。他们接受过五四新文化的洗礼,_____,无论对中西之学,都保持着平和的一视同仁态度。填入横线处最恰当的一项是()。
内隐社会认知的研究方法包括
在计算机网络中,英文缩写LAN的中文名是
A、Peoplecametoseetheroleofwomeninthebusinessworld.B、KatharineplayedamajorpartinreshapingAmericans’mind.C、Am
最新回复
(
0
)