首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
(2003年试题,十二)已知平面上三条不同直线的方程分别为l1:ax+2b+3c=0l2:bx+2cy+3a=0l3:cx+2xy+3b=0试证这三条直线交于一点的充分必要条件为a+b+c=0
(2003年试题,十二)已知平面上三条不同直线的方程分别为l1:ax+2b+3c=0l2:bx+2cy+3a=0l3:cx+2xy+3b=0试证这三条直线交于一点的充分必要条件为a+b+c=0
admin
2019-08-01
90
问题
(2003年试题,十二)已知平面上三条不同直线的方程分别为l
1
:ax+2b+3c=0l
2
:bx+2cy+3a=0l
3
:cx+2xy+3b=0试证这三条直线交于一点的充分必要条件为a+b+c=0
选项
答案
由题设,三条直线交于一点等价于线性非齐次方程组[*](1)有唯一解,下面先证必要性,设系数矩阵为A,增广矩阵为B,则[*]方程组(1)有唯一解,则r(A)=r(B)=2,因而|B|=0,即[*]=3(a+b+c)[(a一b)
2
+(b一c)
2
+(c一a)
2
]=0由已知3条直线不相同,从而(a一b)
2
+(b一c)
2
+(c一a)
2
≠0,因此a+b+c=0至此,必要性得证;再证充分性,由于a+b+c=0,则|B|=0,因此r(B)≤2,又因为[*]由此r(A)=2,所以r(A)=r(B)=2,则方程组(1)有唯一解,也即三条直线交于一点,充分性得证.
解析
本题的另外一种证法:(1)必要性:设三条直线交于一点(x
o
,y
o
),则
是A
x
=0的非零解,其中
因此|A|=0,即|A|=一3(a+b+c)[(a一b)
2
+(b一c)
2
+(c一a)
2
],由于(a一b)
2
+(b一c)
2
+(c一a)
2
≠0,知a+b+c=0(2)充分性:由方程组
的三个方程相加,并结合a+b+c=0,知上述方程等价于以下方程组
由于
=一[a
2
+2ab+b
2
+a
2
+b
2
]=一[(a+b)
2
+a
2
+b
2
]≠0,因此原方程组解唯一,从而三条直线交于一点.
转载请注明原文地址:https://kaotiyun.com/show/3PN4777K
0
考研数学二
相关试题推荐
设z=z(z,y)满足证明:
曲线的斜渐近线为________.
设f(x)为二阶可导的偶函数,f(0)=1,f’’(0)=2且f’’(x)在x=0的邻域内连续,则=_______.
设f(x)=,求f(x)的间断点并指出其类型.
设由方程xef(y)=ey确定y为x的函数,其中f(x)二阶可导,且f’≠1,则=______.
设f(x)在[a,b]上连续,在(a,b)内二阶连续可导.证明:存在ξ∈(a,b),使得
曲线的渐近线的条数为().
已知α1,α2都是3阶矩阵A的特征向量,特征值分别为-1和1,又3维向量α3满足Aα3=α2+α3.证明α1,α2,α3线性无关.
积分∫aa+2πcosxln(2+cosx)dx的值
(2000年)设E为4阶单位矩阵,且B-(E+A)-1(E-A).则(E+B)-1=_______.
随机试题
简述报纸的发行网络的作用。
普鲁卡因在体内的主要消除途径是:
从业人员遵守业务操作指引,遵循岗位职责的划分和风险隔离的操作规程,银行从业人员应坚持诚实守信、公平合理、()的原则。正确处理业务开拓与客户利益保护之间的关系。
冠状动脉粥样硬化的好发部位是()。
下列不属于备课内容的是()。
目前我国事业单位中,国有事业单位占()以上。
(2007年第2题)阅读下面的短文,回答下列问题:正在热闹哄哄的时节,只见那后台里,又出来了一位姑娘,年纪约十八九岁,装束与前一个毫无分别,瓜子脸儿,白净面皮,相貌不过中人以上之姿,只觉得秀而不媚,___,半低着头出来,立在半桌后面,把梨花简丁当了几声,
设矩阵A满足A2+A-4E=0,其中E为单位矩阵,则(A-E)-1=_______.
WithHowells,James,andMarkTwainactiveontheliteraryscene,______becamethemajortrendinAmericanliteratureinthese
Womendriversaremorelikelytobeinvolvedinanaccident,accordingtoscientists.Researchers【C1】______6.5millioncar
最新回复
(
0
)