首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设3维向量组α1,α2线性无关,β1,β2线性无关. 若α1=[1,一2,3]T,α2=[2,1,1]T,β1=[2,1,4]T,β2=[一5,一3,5]T.求既可由α,α线性表出,也可由β1,β2线性表出的所有非零向量ξ.
设3维向量组α1,α2线性无关,β1,β2线性无关. 若α1=[1,一2,3]T,α2=[2,1,1]T,β1=[2,1,4]T,β2=[一5,一3,5]T.求既可由α,α线性表出,也可由β1,β2线性表出的所有非零向量ξ.
admin
2014-04-16
80
问题
设3维向量组α
1
,α
2
线性无关,β
1
,β
2
线性无关.
若α
1
=[1,一2,3]
T
,α
2
=[2,1,1]
T
,β
1
=[2,1,4]
T
,β
2
=[一5,一3,5]
T
.求既可由α,α线性表出,也可由β
1
,β
2
线性表出的所有非零向量ξ.
选项
答案
设ξ=k
1
α
1
+k
2
α
2
=λ
1
β
1
-λ
2
β
2
,则得齐次线性方程组k
1
α
1
+k
2
α
2
+λ
1
β
1
+λ
2
β
2
=0,将α
1
,α
2
,β
1
,β
2
成矩阵,初作初等行变换得[*]解得[k
1
,k
2
,λ
1
,λ
2
]=k[一1.2,一1,1].故既可由α
1
,α
2
线性表出,又可以由β
1
,β
2
线性表出的所有非零向量为ξ=k
1
α
1
+k
2
α
2
=一kα
1
+2kα
2
=[*]其中k是任意的非零常数.(或ξ=—λ
1
β
1
一λ
2
β
2
=kβ
1
-kβ
2
=[*]其k是是任意的非零常数)
解析
转载请注明原文地址:https://kaotiyun.com/show/QH34777K
0
考研数学二
相关试题推荐
(2006年)设函数f(x)在x=0处连续,且,则()
[2002年]设常数则
(94年)设函数f(χ)在闭区间[a,b]上连续,且f(χ)>0,则方程∫aχf(t)dt+=0在开区间(a,b)内的根有
[2018年]设平面区域D由曲线与直线及y轴围成,计算二重积分
设二次型f(x1,x2,x3)=x12+x22+x32+2ax1x2+2x1x3+2bx2x3的秩为1,且(0,1,-1)T为二次型的矩阵A的特征向量.(Ⅰ)求常数a,b;(Ⅱ)求正交变换X=QY,使二次型XTAX化为标准形。
设f(x)连续,且f(1)=0,f’(1)=2,求极限。
设A是三阶矩阵,α1,α2,α3为三维列向量且α1≠0,若Aα1=α1,Aα2=α1+α2,Aα3=α2+α3。(Ⅰ)证明:向量组α1,α2,α3线性无关;(Ⅱ)证明:A不可相似对角化。
微分方程y"-3y’+2y=2ex满足的特解为=________。
设矩阵仅有两个不同的特征值,若A相似于对角矩阵,求a,b的值,并求可逆矩阵P,使P-1AP为对角矩阵.
微分方程y”+4y=x+cos2x的特解可设为()
随机试题
宫内生长发育的质量是影响()和生后发病率的一个重要因素。
患者,男性,46岁。既往有慢性乙型肝炎病史,乙肝后肝硬化。发现尿蛋白阳性1个月来诊,无血尿,无恶心呕吐,发现双下肢水肿。既往否认糖尿病及高血压病史。查体:肝病面容,血压170/100mmHg,双肺未闻及干湿啰音,心律齐,无杂音,腹软,无压痛,双下肢水肿。尿
A.患者血压明显升高,体检:血压200/130mmHg(26.6/16.9kPa),眼底出血渗出、视乳头水肿。实验室报告:肾功能不全B.患者气急,端坐呼吸。体检:心脏扩大,听诊可闻及第四心音奔马律,双下肢浮肿,超声心动图报告:左心室腔明显扩大C.患者平
慢性支气管炎患者呼吸道感染时,最常致病的革兰阴性杆菌为
又称精油,可随水蒸气蒸馏,与水不能混溶的挥发性成分为环烯醚萜醇,具半缩醛及环戊烷特征结构,其C-1连接的OH不稳定,常和糖结合成苷
()除由两个电源供电外,尚应增设应急电源。
根据下面材料,回答下列题目:钟华,现年45岁,就任于北方创业公司,打算65岁退休,考虑到通货膨胀,退休后每年生活费需要10万元,预计可以活到85岁。为了能更好地安度晚年,钟华今年拿出10万元作为退休基金的启动资金,并打算每年末投入一笔等额的资金。钟华在退
一个产品要畅销,产品的质量和经销商的诚信缺一不可。除了哪一项以下各项都符合题干的断定?
计算行列式Dn+1=,其中ai≠0(i=0,1,2,…,n).
Shewasvery______;shecriedevenwhenherhusbandleftforanothercityonbusiness.
最新回复
(
0
)