首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
(Ⅰ)设ex+y=y确定y=y(x),求y’,y"; (Ⅱ)设函数y=f(x+y),其中f具有二阶导数,且f’≠1,求
(Ⅰ)设ex+y=y确定y=y(x),求y’,y"; (Ⅱ)设函数y=f(x+y),其中f具有二阶导数,且f’≠1,求
admin
2019-08-12
31
问题
(Ⅰ)设e
x+y
=y确定y=y(x),求y’,y";
(Ⅱ)设函数y=f(x+y),其中f具有二阶导数,且f’≠1,求
选项
答案
(Ⅰ)注意y是x的函数,将方程两端对x求导得 e
x+y
(1+y’)=)=y’,即[*](这里用方程e
x+y
=y化简) 再将y’的表达式对x求导得 [*] (Ⅱ)y=y(x)由方程f(x+y)-y=0确定,f为抽象函数,若把f(x+y)看成f(u),而u=x+y,y=y(x),则变成复合函数和隐函数的求导问题.注意,f(x+y)及其导函数f’(x+y)均是x的复合函数. 将y=f(x+y)两边对x求导,并注意y是x的函数,f是关于x的复合函数,有 y’=f’.(1+y’),即y’=[*](其中f’=f’(x+y)). 又由y’=(1+y’)f’再对x求导,并注意y’是x的函数,f’即f’(x+y)仍然是关于x的复合函数,有 y"=(1+y’)f’+(1+y’)(f’)
x
’ =y"f’+(1+y’)f".(1+y’)=y"f’+(1+y’)
2
f", 将y’=[*]代入并解出y"即得 [*]
解析
转载请注明原文地址:https://kaotiyun.com/show/JcN4777K
0
考研数学二
相关试题推荐
(08)设A为3阶矩阵,α1,α2为A的分别属于特征值-1,1的特征向量,向量α3满足Aα3=α2+α3.(Ⅰ)证明α1,α2,α3线性无关;(Ⅱ)令P=[α1,α2,α3],求P-1AP.
(03)已知平面上三条不同直线的方程分别为l1:ax+2by+3c=0,l2:bx+2cy+3a=0,l3:cx+2ay+3b=0试证这三条直线交于一点的充分必要条件为a+b+c=0.
(01)已知α1,α2,α3,α4是线性方程组AX=0的一个基础解系,若β1=α1+tα2,β2=α2+tα3,β3=α3+tα1,β4=α1+tα1.讨论实数t满足什么关系时,β1,β2,β3,β4也是AX=0的一个基础解系.
设矩阵A=相似.(1)求a,b的值;(2)求一个可逆矩阵P,使P-1AP=B.
已知是f(x)的一个原函数,求∫x3f’(x)dx.
计算[1+yf(x2+y2)]dxdy,其中D是由y=x3,y=1,x=一1所围成的区域,f(x,y)是连续函数.
求下列曲线的渐近线:
设f(x)在[a,b]上二阶可导,且f’(a)=f’(b)=0,证明:ξ∈(a,b),使|f"(ξ)|≥|f(b)一f(a)|。
设f(x)是连续函数.若|f(x)|≤k,证明:当x≥0时,有
设平面曲线L上一点M处的曲率半径为ρ,曲率中心为A,AM为L在点M处的法线,法线上的两点P,Q分别位于L的两侧,其中P在AM上,Q在AM的延长线AN上,若P,Q满足|AP|.|AQ|=ρ2,称P,Q关于L对称.设,P点的坐标为求点M,使得L在M点处的法
随机试题
国防建设的基本依托是()
患者,男,66岁,因胸骨后疼痛2d,出冷汗,皮肤凉1h来院就诊。测BP10.6/6.6kPa(80/50mmHg)。ECG示V1-6,I、aVL导联的ST段明显抬高,并有深而宽的Q波。血清CK-MB峰高出正常的12倍。对该患者最有效的治疗是
申请人自发明或者实用新型在外国第一次提出专利申请之日起______,或者自外观设计在外国第一次提出专利申请之日起______,又在中国就相同主题提出专利申请的,依照该外国同中国签订的协议或者共同参加的国际条约,或者依照相互承认优先权的原则,可以享有优先权
MnO2+HCl=MnCl2+Cl2+H2O将反应配平后,MnCl2的系数为()。
根据《金融机构协助查询、冻结、扣划工作管理规定》,办理协助冻结业务时,金融机构经办人员应当核实的证件和法律文书不包括()。
设f(x)是偶函数,若曲线y=f(x)在点(1,f(1))处的切线的斜率为1,则该曲线在点(-1,f(-1))处的切线的斜率为__________.
1938年5、6月间,毛泽东发表《论持久战》的讲演,指出抗日战争是持久的,最后的胜利是中国的,全部问题的根据是()
下面是关于计算机病毒的4条叙述,其中正确的一条是______。
Whichofthefollowingcanbeusedasastativeverb(静态动词)?
TheAncientGreekOlympicsToday’sOlympicGamesarebasedonwhattookplaceatOlympia,inGreece,nearlythreemillennia
最新回复
(
0
)