首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
(06)设3阶实对称矩阵A的各行元素之和均为3,向量α1=(-1,2,-1)T,α2=(0,-1,1)T是线性方程组Ax=0的两个解. (Ⅰ)求A的特征值与特征向量; (Ⅱ)求正交矩阵Q和对角矩阵A,使得QTAQ=A.
(06)设3阶实对称矩阵A的各行元素之和均为3,向量α1=(-1,2,-1)T,α2=(0,-1,1)T是线性方程组Ax=0的两个解. (Ⅰ)求A的特征值与特征向量; (Ⅱ)求正交矩阵Q和对角矩阵A,使得QTAQ=A.
admin
2018-08-01
73
问题
(06)设3阶实对称矩阵A的各行元素之和均为3,向量α
1
=(-1,2,-1)
T
,α
2
=(0,-1,1)
T
是线性方程组Ax=0的两个解.
(Ⅰ)求A的特征值与特征向量;
(Ⅱ)求正交矩阵Q和对角矩阵A,使得Q
T
AQ=A.
选项
答案
(Ⅰ)由于矩阵A的各行元素之和均为3,所以 [*] 因为Aα
1
=0,Aα
2
=0,即 Aα
1
=0α
1
,Aα
2
=0α
2
故由定义知λ
1
=λ
2
=0是A的二重特征值,α
1
,α
2
为A的属于特征值0的两个线性无关特征向量;λ
3
=3是A的一个特征值,α
3
=(1,1,1)
T
为A的属于特征值3的特征向量. 总之,A的特征值为0,0,3.属于特征值0的全体特征向量为k
1
α
1
+k
2
α
2
(k
1
,k
2
不全为零),属于特征值3的全体特征向量为k
3
α
3
(k
3
≠0). (Ⅱ)由实对称矩阵的性质,知A的属于特征λ
1
=λ
2
=0的特征向量ξ=(x
1
,x
2
,x
3
)
T
与属于特征值λ
3
=1的特征向量α
3
=(1,1,1)
T
正交,即 x
1
+x
2
+x
3
=0 求解此齐次方程,得其基础解系——即属于λ
1
=λ
2
=0的两个线性无关特征向量为 ξ
1
=(-1,1,0)
T
, ξ
2
=(1,1,-2)
T
ξ
1
与ξ
2
已经正交,故ξ
1
,ξ
2
,α
3
为A的3个两两正交的特征向量,再将它们单位化,便得所求的正交矩阵可取为 [*] 且使Q
T
AQ=diag(0,0,3).
解析
转载请注明原文地址:https://kaotiyun.com/show/32j4777K
0
考研数学二
相关试题推荐
设A是,n阶矩阵,下列结论正确的是().
设y=y(x)过原点,在原点处的切线平行于直线y=2x+1,又y=y(x)满足微分方程y"-6y’+9y=e3x,则y(x)=_______.
在上半平面上求一条上凹曲线,其上任一点P(x,y)处的曲率等于此曲线在该点的法线段PQ的长度的倒数(Q为法线与x轴的交点),且曲线在点(1,1)处的切线与z轴平行.
设f(x)在[a,b]上连续,在(a,b)内可导(a>0),证明:存在ξ∈(a,b),使得
证明:若矩阵A可逆,则其逆矩阵必然唯一.
求微分方程y"+2y’-3y=(2x+1)ex的通解.
函数f(x)=x3-3x+k只有一个零点,则k的范围为().
求方程组的通解.
设A为n阶矩阵,A11≠0.证明:非齐次线性方程组AX=b有无穷多个解的充分必要条件是A*,α2b=0.
随机试题
A.卵磷脂与鞘磷脂的比值B.肌酐值C.胆红素类物质D.淀粉酶值E.脂肪细胞出现率羊水中哪项检查可提示皮肤的成熟度
润滑油清净分散性系数K=0时,润滑油的清净分散性等于零,说明润滑油()。
在“我的电脑”或“资源管理器”’窗口中,使用“查看”菜单可以按名称、类型大小和修改日期排列右区的内容。()
A.单纯扩散B.易化扩散C.主动转运D.继发性主动转运E.出胞与入胞肠道和肾小管上皮细胞对葡萄糖的吸收方式为
上消化道出血药物治疗合理的是()
关于犯罪主观方面的说法,下列哪些选项是正确的?()
根据《工程建设项目施工招标投标办法》的规定,投标保证金最高不得超过()万元人民币。
证券的()是指证券变现的难易程度。
持有公司()以上股份的股东及其董事、监事、高级管理人员为证券交易内部信息知情人。
依据情绪发生的强度、持续性和紧张度可以把情绪分为心境、_________、应激。
最新回复
(
0
)