首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
A和B均是m×n矩阵,秩r(A)+r(B)=n,若BBT=E且B的行向量是齐次方程组AX=0的解,P是M阶可逆矩阵,证明:矩阵pb的行向量是Ax=0的基础解系.
A和B均是m×n矩阵,秩r(A)+r(B)=n,若BBT=E且B的行向量是齐次方程组AX=0的解,P是M阶可逆矩阵,证明:矩阵pb的行向量是Ax=0的基础解系.
admin
2017-06-14
48
问题
A和B均是m×n矩阵,秩r(A)+r(B)=n,若BB
T
=E且B的行向量是齐次方程组AX=0的解,P是M阶可逆矩阵,证明:矩阵pb的行向量是Ax=0的基础解系.
选项
答案
由r(B)≥r(BB
T
)=r(E)=m,得到r(B)=m.于是B的行向量组线性无关,且n-r(A)=m. 根据题设,B的行向量是Ax=0的解,知AB
T
=0.于是 A(PB)
T
=AB
T
P
T
=0P
T
=0. 因此,PB的m个行向量是Ax=0的解.又矩阵P可逆,于是r(PB)=r(B)=m,从而PB的行向量线性无关,所以PB的行向量是Ax=0的基础解系. 检验一组向量α
1
,α
2
,…,α
s
是否为A
m×n
x=0的基础解系,只需检验:(1)α
1
,α
2
,…,α
s
为Ax=0的解;(2)α
1
,α
2
,…,α
s
线性无关;(3)s=n-r(A).
解析
转载请注明原文地址:https://kaotiyun.com/show/Jdu4777K
0
考研数学一
相关试题推荐
[*]
[*]
设A为m×n矩阵,则有().
设函数问函数f(x)在x=1处是否连续?若不连续,修改函数在x=1处的定义使之连续.
设随机变量x的概率密度为令Y=X2,F(x,y)为二维随机变量(X,Y)的分布函数,求:(Ⅰ)Y的概率密度fY(y);(Ⅱ)cov(X,Y);(Ⅲ)F(-1/2,4).
设f(x)在闭区间[0,c]上连续,其导数f’(x)在开区间(0,c)内存在且单调减少,f(0)=0,试应用拉格朗日中值定理证明不等式:f(a+b)≤f(a)+f(b),其中常数a,b满足条件0≤a≤b≤a+b≤c.
函数u=ln(x2+y2+z2)在点M(1,2,-2)处的梯度gradu|M=__________.
设当实数a为何值时,方程组Ax=β有无穷多解,并求其通解.
设函数f(x)=x+aln(1+x)+bxsinx,g(x)=kx3,若f(x)与g(x)在x→0时是等价无穷小,求a,b,k,的值
设当x→x0时,α(x),β(x)都是无穷小(β(x)≠0),则当x→x0时,下列表达式中不一定为无穷小的是()
随机试题
人民法院受理债务人甲公司破产申请时,乙公司依照其与甲公司之间的买卖合同已向买受人甲公司发运了该合同项下的货物,但甲公司尚未支付价款。乙公司得知甲公司破产申请被受理后,立即通过传真向甲公司的管理人要求取回在运途中的货物。管理人收到乙公司传真后不久,即收到了乙
动脉粥样硬化病变中的脂质来源于:
下述指标中对渗出液诊断最有帮助的是()。
拆除无固定支撑架的大模板时,可采取将模板直接靠在墙体结构上作为临时固定措施。()
凡带有支柱或框架式钢结构的高炉,其钢结构与炉壳之间采取的连接方式是()。
如果企业的资金来源全部为自有资金,且没有优先股存在,则企业的财务杠杆系数()。
企业在分析投资方案时,有关所得税率的数据应根据()来确定。
一般资料:求助者,男,33岁,公司职员。案例介绍:今年春节前求助者的父亲在老家突发心脏病去世,求助者将母亲接来同住。最初的一个多月的时间里,妻子和母亲还能够和平相处,但随着时间的推移,双方的矛盾逐渐显现出来;从日常的饮食起居到孩子的培养教育都能成
办公室按零售价花费360元购买了一批笔记本。如果按批发价购买,则每个笔记本能便宜3元,且恰好能多购买20个。则该笔记本零售价为()元。
I’msureyoursuggestionwill______theproblem.
最新回复
(
0
)