设S(x)=∫0x|cosx|dt· 证明:当nπ≤x<(n+1)π时,2n≤S(x)<2(n+1);

admin2019-01-23  26

问题 设S(x)=∫0x|cosx|dt·
证明:当nπ≤x<(n+1)π时,2n≤S(x)<2(n+1);

选项

答案当nπ≤x<(n+1)π时,∫0|cost|dt≤∫0π|cost|dt<∫0(n+1)π|cost|dt, ∫0|cost|dt=n∫0π|cost|dt=[*]=2n, ∫0(n+1)π|cost|dt=2(n+1),则2n≤S(x)<2(n+1).

解析
转载请注明原文地址:https://kaotiyun.com/show/JwM4777K
0

最新回复(0)