首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)可导,F(x)=f(x)(1+|sinx|),则f(0)=0是F(x)在x=0处可导的( ).
设f(x)可导,F(x)=f(x)(1+|sinx|),则f(0)=0是F(x)在x=0处可导的( ).
admin
2021-01-15
7
问题
设f(x)可导,F(x)=f(x)(1+|sinx|),则f(0)=0是F(x)在x=0处可导的( ).
选项
A、充分必要条件
B、充分条件但非必要条件
C、必要条件但非充分条件
D、既非充分条件又非必要条件
答案
A
解析
(1)F(0)=f(0)(1+sin0)=0.又因
故F’
+
(0)=F’
-
(0).因而F(x)在x=0处可导,且F’(0)=f’(0).
(2)下证f(0)=0是F(x)在x=0处可导的必要条件.
因F(x)在x=0处可导,故F’
+
(0)=F’
-
(0).由(1)中推导知
F’
+
(0)=f’(0)+f(0), F’
-
(0)=f’(0)一f(0),
而F’
+
(0)=F’
-
(0),故f’(0)+f(0)=f’(0)-f(0),即f(0)=0.
由(1),(2)可知,仅A入选.
转载请注明原文地址:https://kaotiyun.com/show/K1q4777K
0
考研数学一
相关试题推荐
设a>0,f(x)在(-∞,+∞)上有连续导数,求极限1/4a2∫-aa[f(t+a)-f(t-a))]dt.
求极限。
要建一个体积为V的有盖圆柱形氨水池,已知上下底的造价是四周造价的2倍,问这个氨水池底面半径为多大时,总造价最低?
设对于半空间x>0内任意的光滑有向封闭曲面S,都有其中函数f(x)在(0,+∞)内具有连续一阶导数,且.求f(x).
(2016年)设函数f(x,y)满足且f(0,y)=y+1,Lt是从点(0,0)到点(1,t)的光滑曲线,计算曲线积分并求I(t)的最小值。
(2006年试题,19)设在上半平面D={(x,y)|y>0}内,函数,(x,y)具有连续偏导数,且对任意的t>0都有f(tx,ty)=t-2f(x,y).证明:对D内的任意分段光滑的有向简单闭曲线L,都有
设四元齐次线性方程组(I)为又已知某齐次线性方程组(Ⅱ)的通解为k1[0,1,1,0]T+k2[一1,2,2,1]T.问线性方程组(I)和(Ⅱ)是否有非零公共解?若有,则求出所有的公共非零解;若没有,则说明理由.
椭球面∑1是椭圆L:绕x轴旋转而成,圆锥面∑2是由过点(4,0)且与椭圆相切的直线绕x轴旋转而成.求位于∑1及∑2之间的立体体积.
[2006年]设随机变量X服从正态分布N(μ1,σ1),Y服从正态分布N(μ2,σ22),且P(|X一μ1|<1)>P(|Y-μ2|<1),则().
(1989年)已知f’(3)=2,则
随机试题
婴儿出现(),如出血位置无法压迫,可让婴儿躺下,用拳头或手掌根部把出血的血管压向对侧的骨头方向。
常见的肛周脓肿是
治疗阴虚内热型内伤发热的首选方剂是
可能的诊断是若需要应采取的正确预防措施是
喜欢买报纸的人、常常________于报刊亭的人必然有着阅读的兴趣并养成了习惯,这样的行为不仅影响着个人的生活,也在________中影响着他人。将报刊亭打造成一个公共的阅读空间,就像现在随处可见的自助K歌房一样,这种________又便捷的阅读点,激发的
典型欠阻尼二阶系统超调量大于5%,则其阻尼ξ的范围为()。
从各国保险立法来看,关于投保人或被保险人的告知方式一般分为以下两种,即()。
某企业2011年年底“应付账款”科目月末贷方余额20000元,其中:“应付甲公司账款”明细科目贷方余额15000元,“应付乙公司账款”明细科目贷方余额5000元;“预付账款”科目月末贷方余额10000元,其中:“预付账款——甲工厂”明细科目贷方余额
Manystudentsfindtheexperienceofattendinguniversitylecturestobeareallyconfusingand【C1】______experience.Thelecture
Ithasbeenproventhatshortburstsofconcentrationrepeatedfrequentlyaremuchmore【B1】______thanonelongperiod.So,even
最新回复
(
0
)