首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A为3阶矩阵,λ1,λ2,λ3是A的三个不同特征值,对应的特征向量为α1,α2,α3,令β=α1+α2+α3. (1)证明β,Aβ,A2β线性无关; (2)若A3β=Aβ,求秩r(A—E)及行列式|A+2E|.
设A为3阶矩阵,λ1,λ2,λ3是A的三个不同特征值,对应的特征向量为α1,α2,α3,令β=α1+α2+α3. (1)证明β,Aβ,A2β线性无关; (2)若A3β=Aβ,求秩r(A—E)及行列式|A+2E|.
admin
2018-09-20
80
问题
设A为3阶矩阵,λ
1
,λ
2
,λ
3
是A的三个不同特征值,对应的特征向量为α
1
,α
2
,α
3
,令β=α
1
+α
2
+α
3
.
(1)证明β,Aβ,A
2
β线性无关;
(2)若A
3
β=Aβ,求秩r(A—E)及行列式|A+2E|.
选项
答案
(1)设 k
1
β+k
2
Aβ+k
3
A
2
β=0, ① 由题设Aα
i
=λ
i
α
i
(i=1,2,3),于是 Aβ=Aα
1
+Aα
2
+Aα
3
=λ
1
α
1
+λ
2
α
2
+λ
3
α
3
, A
2
β=λ
1
2
α
1
+λ
2
2
α
2
+λ
3
2
α
3
, 代人①式整理得 (k
1
+k
2
λ
1
+k
3
λ
1
2
)α
1
+(k
1
+k
2
λ
2
+k
3
λ
2
2
)α
2
+(k
1
+k
2
λ
3
+k
3
λ
3
2
)α
3
=0. 因为α
1
,α
2
,α
3
是三个不同特征值对应的特征向量,必线性无关,于是有 [*] 其系数行列式[*]≠0,必有k
1
=k
2
=k
3
=0,故β,Aβ,A
2
β线性无关. (2)由A
3
β=Aβ有 A[β,Aβ,A
2
β]=[Aβ,A
2
β,A
2
β]=[Aβ,A
2
β,Aβ]=[β,Aβ,A
2
β][*] 令P=[β,Aβ,A
2
β],则P可逆,且 [*]
解析
转载请注明原文地址:https://kaotiyun.com/show/KCW4777K
0
考研数学三
相关试题推荐
设总体X的概率分布为,其中p(0<p<1)是未知参数,又设x1,x2,…,xn是总体X的一组样本观测值.试求参数p的矩估计量和最大似然估计量.
已知总体X的概率密度f(x)=(λ>0),X1,…,Xn为来自总体X的简单随机样本,Y=X2.(Ⅰ)求Y的期望EY(记EY为b);(Ⅱ)求λ的矩估计量(Ⅲ)利用上述结果求b的最大似然估计量.
已知A~B,A2=A,证明B2=B.
已知A暑3阶不可可矩阵,-1和2是A的特征值.B=A2-A-2E,求B的特征值,并问B能否相似对角化,并说明理由.
确定常数a和b的值,使f(x)=当x→0时是x的5阶无穷小量.
设某商品需求量Q是价格p的单调减函数Q=Q(p),其需求弹性(Ⅰ)设R为总收益函数,证明(Ⅱ)求p=6时总收益对价格的弹性,并说明其经济意义.
设函数f(x)=的导函数在x=0处连续,则参数λ的取值范围为________.
已知二维随机变量(X,Y)的概率密度为(Ⅰ)求(U,V)的概率分布;(Ⅱ)求U和V的相关系数ρ.
假设随机变量X在区间[-1,1]上均匀分布,则U=arcsinX和V=arccosX的相关系数等于
设f(x)在(a,b)上有定义,c∈(a,b),又f(x)在(a,b)\{c}连续,c为f(x)的第一类间断点.问f(x)在(a,b)是否存在原函数?为什么?
随机试题
患者,男,55岁。腹痛拒按,烦渴喜饮,大便秘结,潮热汗出,小便短黄,舌质红,苔黄腻,脉滑数。治法宜选用
甲是现役军人,乙是一般的工人。双方于1997年登记结婚。2002年1月乙生一女孩。此后,两人经常吵架。2004年2月,乙又生一女孩。由于甲封建思想严重,重男轻女。在乙生育两个女孩之后,经常没事找事与乙吵架,最终甲以夫妻感情破裂,性格不合为由于2005年1月
在材料使用过程中,对部分小型及零星材料根据工程量计算出所需材料量,将其折算成费用,由作业者采用()控制。
系统风险又称为()。Ⅰ.可分散风险Ⅱ.不可分散风险Ⅲ.不可回避风险Ⅳ.可回避风险
2007年10月4日,韩国总统卢武铉与朝鲜领导人金正日举行了历史性会晤,签署了《北南关系发展与和平繁荣宣言》,其内容包括
设有二维数组A[0..9,0..19],其每个元素占两个字节,数组按列优先顺序存储,第一个元素的存储地址为100,那么元素A[6,6]的存储地址为【】。
表单文件的扩展名是( )。
计算机病毒的危害表现为()。
A、OK,Iwill.B、Takecare.C、Thankyou.D、Let’sgo.A本题考查对Could引导的提出请求的一般疑问句的回答。对于此类问题的回答分为肯定和否定两种:肯定回答一般为Yes,ofcourse/Certainl
RainforestsDidyouknowtherearetwotypesofRainforest-thetemperateandthetropical?Tropicalrainforestsarefoundc
最新回复
(
0
)