首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A为3阶矩阵,λ1,λ2,λ3是A的三个不同特征值,对应的特征向量为α1,α2,α3,令β=α1+α2+α3. (1)证明β,Aβ,A2β线性无关; (2)若A3β=Aβ,求秩r(A—E)及行列式|A+2E|.
设A为3阶矩阵,λ1,λ2,λ3是A的三个不同特征值,对应的特征向量为α1,α2,α3,令β=α1+α2+α3. (1)证明β,Aβ,A2β线性无关; (2)若A3β=Aβ,求秩r(A—E)及行列式|A+2E|.
admin
2018-09-20
73
问题
设A为3阶矩阵,λ
1
,λ
2
,λ
3
是A的三个不同特征值,对应的特征向量为α
1
,α
2
,α
3
,令β=α
1
+α
2
+α
3
.
(1)证明β,Aβ,A
2
β线性无关;
(2)若A
3
β=Aβ,求秩r(A—E)及行列式|A+2E|.
选项
答案
(1)设 k
1
β+k
2
Aβ+k
3
A
2
β=0, ① 由题设Aα
i
=λ
i
α
i
(i=1,2,3),于是 Aβ=Aα
1
+Aα
2
+Aα
3
=λ
1
α
1
+λ
2
α
2
+λ
3
α
3
, A
2
β=λ
1
2
α
1
+λ
2
2
α
2
+λ
3
2
α
3
, 代人①式整理得 (k
1
+k
2
λ
1
+k
3
λ
1
2
)α
1
+(k
1
+k
2
λ
2
+k
3
λ
2
2
)α
2
+(k
1
+k
2
λ
3
+k
3
λ
3
2
)α
3
=0. 因为α
1
,α
2
,α
3
是三个不同特征值对应的特征向量,必线性无关,于是有 [*] 其系数行列式[*]≠0,必有k
1
=k
2
=k
3
=0,故β,Aβ,A
2
β线性无关. (2)由A
3
β=Aβ有 A[β,Aβ,A
2
β]=[Aβ,A
2
β,A
2
β]=[Aβ,A
2
β,Aβ]=[β,Aβ,A
2
β][*] 令P=[β,Aβ,A
2
β],则P可逆,且 [*]
解析
转载请注明原文地址:https://kaotiyun.com/show/KCW4777K
0
考研数学三
相关试题推荐
作函数y=的图形.
设g(x)在[a,b]连续,f(x)在[a,b]二阶可导,f(a)=f(b)=0,且对(a≤x≤b)满足f’’(x)+g(x)f’(x)-f(x)=0.求证:当x∈[a,b]时f(x)≡0.
在x=0处展开下列函数至括号内的指定阶数:(I)f(x)=tanx(x3);(Ⅱ)f(x)=sin(sinx)(x3).
对于任意二随机变量X和Y,与命题“X和Y不相关”不等价的是
已知ξ是n维列向量,且ξTξ=1,设A=E-ξξT,证明:|A|=0.
已知A是2n+1阶正交矩阵,即AAT=ATA=E,证明:|E-A2|=0.
设A是3×4阶矩阵且r(A)=1,设(1,一2,1,2)T,(1,0,5,2)T,(一1,2,0,1)T,(2,一4,3,a+1)T皆为AX=0的解.求方程组AX=0的通解.
电话公司有300台分机,每台分机有6%的时间处于与外线通话状态,设每台分机是否处于通话状态相互独立,用中心极限定理估计至少安装多少条外线才能保证每台分机使用外线不必等候的概率不低于0.95?
求的间断点并判断其类型.
设二次型f(x1,x2,x3)=XTAX,A的主对角线上元素之和为3,又AB+B=0,其中求正交变换X=QY将二次型化为标准形;
随机试题
呕血与黑便最常见的疾病是( )
男性,25岁。发现高血压2年,血压最高160/120mmHg,尿蛋白(++),BUN28.6mmol/L,Scr442μmol/L,红细胞2.6×1012/L。其诊断是()
我国宪法规定了国家主席的替补制度,下列选项中对替补制度的表述哪个是错误的?()
世界银行直属的发展机构组成包括()。
内部控制制度应当涵盖公司经营管理的各个环节,不得留有制度上的空白或漏洞,这体现了内部控制制度的()原则。
注册会计师为应对财务报表层次的重大错报风险,对拟实施审计程序的性质、时间安排和范围作出的下列总体修改,其中不恰当的是()。
根据物流服务企业提供的服务类型,可以把物流企业分为两类。一类是提供功能性物流服务业务的物流企业,另一类是()。
毛泽东指出.发展国民经济的总方针是()。
求内接于椭球面的长方体的最大体积.
Whydoestheprofessormentionaflute?
最新回复
(
0
)